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Abstract 
This research examines adaptive control strategies for robotic 
manipulators using Deep Reinforcement Learning (DRL) through a 
systematic literature review approach. The main focus of the study is the 
identification of commonly used DRL algorithms, implementation 
challenges, and the direction of developing DRL-based adaptive control 
systems. The study results show that algorithms such as DDPG, SAC, and 
PPO are effective in addressing the non-linear dynamics and 
uncertainties of robotic manipulators, both in simulation and real-world 
environments. However, there are significant challenges such as the 
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need for large training data, the simulation-to-real gap, and the 
limitations in the interpretability of control policies. The integration of 
hybrid control strategies, the development of more sample-efficient 
algorithms, and the application of hierarchical and meta-reinforcement 
learning have been identified as promising future research directions. 
This study provides a foundation for the development of more flexible, 
efficient, and safe robotic control systems to support various industrial 
applications. 

Keywords: Adaptive Control, Robotic Manipulator, Deep Reinforcement 
Learning 
 
INTRODUCTION 

The development of robotic technology in the last decade has seen 

significant improvements, particularly in the field of robotic manipulators. 

Robotic manipulators are widely used in the manufacturing, medical, and even 

space exploration industries. This system requires a high level of precision, 

speed, and flexibility in its control. In facing a dynamic work environment, 

robots must be able to adapt to changing conditions in real-time (Yanover & 

Choukroun, 2024). Therefore, the need for adaptive control systems is 

becoming increasingly important to enhance the performance of 

manipulators. Adaptive control technology has become one of the promising 

approaches to address this challenge. 

Adaptive control in robotic manipulators focuses on the system's 

ability to automatically adjust control parameters according to changes in 

system or environmental characteristics. Robotic manipulators often face 

variations in load, friction, and uncertainties in dynamic models that cannot be 

fully predicted in advance. This condition causes control using conventional 

methods such as PID (Proportional-Integral-Derivative) to become less 

effective. Adaptive control systems are expected to provide solutions by 

continuously adjusting parameters without human intervention (Pei & Lan, 

2023). This allows robotic manipulators to operate more efficiently and stably. 

However, designing an effective adaptive control strategy is not a simple task. 

One of the main challenges in controlling robotic manipulators is the 

high complexity of the dynamic model. Manipulators have many degrees of 

freedom (Degrees of Freedom/DOF) which cause the non-linear interactions 

between their components to become very complex. Additionally, factors 

such as parameter uncertainty, external disturbances, and environmental 

changes increase the level of difficulty in designing reliable control systems. 

Accurate mathematical models are often difficult to obtain in practice, so 
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control methods that do not heavily rely on models are needed. Adaptive 

control offers the ability to overcome these limitations through feedback-

based adjustments (Kashkash et al., 2024). However, the implementation of 

conventional adaptive control still has limitations, particularly in terms of 

efficiency and stability. 

With the advancement of artificial intelligence, approaches based on 

Deep Reinforcement Learning (DRL) have begun to be introduced in robotic 

control. DRL is a combination of Reinforcement Learning (RL) and Deep 

Learning that allows agents to learn control strategies directly from sensor 

data or simulations. This method is capable of handling high-dimensional 

systems and complex environments without requiring an explicit dynamic 

model. By leveraging the structure of neural networks, DRL is capable of 

approximating complex control policy functions and adapting flexibly to 

environmental changes (Ge, 2024). This provides a great opportunity for the 

development of adaptive control systems for robotic manipulators. DRL has 

shown promising results in various experimental studies, both in simulations 

and on real robots. 

Nevertheless, the application of DRL in adaptive control of robotic 

manipulators is not without its own challenges. One of the main issues is the 

need for a very large amount of training data for the DRL agent to learn 

optimal strategies. The exploration process carried out by DRL agents often 

requires a long time and significant computational resources. Additionally, 

there is a risk of instability during the training process that can cause physical 

damage to the robot if applied directly (Zhang & Mo, 2023). Therefore, special 

strategies such as simulation beforehand are necessary before applying it in 

the real world (sim-to-real transfer). These issues have become a primary 

concern in the further development of DRL technology for adaptive robotic 

control. 

Current research trends show efforts to address the limitations of DRL 

through various hybrid approaches. One of them is by combining conventional 

adaptive control with DRL, resulting in a control system that is both more 

stable and flexible. This approach allows for the utilization of the advantages 

of both methods, namely the stability of conventional control and the 

adaptability of DRL. Additionally, the development of more sample-efficient 

DRL algorithms such as Soft Actor-Critic (SAC) and Twin Delayed DDPG (TD3) 

is also becoming increasingly popular. These algorithms are capable of 

reducing the need for training data without sacrificing control performance 
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(Yang et al., 2024). Thus, the integration of DRL into adaptive control of 

robotic manipulators is becoming increasingly feasible for implementation. 

In various literature studies, the application of DRL has been found in 

various types of manipulators, ranging from simple robotic arms to complex 

humanoid robots. These studies show that DRL can improve the accuracy and 

robustness of robot control systems against disturbances and parameter 

changes. Several studies also report that DRL can overcome the limitations of 

traditional adaptive control methods, particularly in highly dynamic and 

unstructured environments (Pan et al., 2023). However, it should be 

acknowledged that most experiments are still conducted in simulated 

environments. Therefore, it is important to conduct further research to ensure 

that the control strategies developed through DRL can be effectively 

implemented in the real world. Validation in a physical environment becomes 

a crucial step in this process. 

Based on the aforementioned description, it is important to conduct a 

comprehensive literature review on adaptive control strategies for robotic 

manipulators using Deep Reinforcement Learning. This study aims to 

summarize various approaches, algorithms, and challenges that have been 

identified in previous research. Thus, a clearer picture can be obtained 

regarding the advantages and disadvantages of each existing control strategy. 

This study is also expected to provide direction for the development of further 

research in the field of DRL-based robotic control. Such research has great 

potential in enhancing the efficiency and flexibility of robotic systems across 

various industrial sectors. In addition, the results of this study can serve as a 

reference for practitioners and researchers interested in developing adaptive 

control systems based on artificial intelligence. 

 

RESEARCH METHOD 

This literature review uses a systematic literature review (SLR) 

approach to obtain a comprehensive understanding of adaptive control 

strategies for robotic manipulators using Deep Reinforcement Learning (DRL). 

The review process begins by establishing the inclusion and exclusion criteria 

for the articles to be reviewed (Snyder, 2019; Tranfield et al., 2003). The 

articles included in this study are English-language scientific publications, 

published between 2015 and 2025, specifically discussing the application of 

DRL in the control of robotic manipulators or similar robotic systems. Articles 

that only discuss DRL theory without implementation in robotic systems, as 

well as articles that have not undergone the peer-review process, are 
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excluded from the study. In addition, only articles from reputable journals and 

proceedings were selected to maintain the validity of the study's results. 

The main data sources in this study include leading scientific databases 

such as IEEE Xplore, ScienceDirect, SpringerLink, and Google Scholar as 

additional support. The identification process begins with a search using 

keywords such as "adaptive control," "robot manipulator," "deep 

reinforcement learning," and "robotic control strategy." After the 

identification stage, a selection process is carried out by reading abstracts and 

topic relevance based on the established criteria. Relevant articles are then 

further analyzed through data extraction related to control methods, the DRL 

algorithms used, types of manipulators, as well as reported results and 

challenges. This process ensures that the literature review conducted is 

systematic, transparent, and can be replicated by other researchers. 

 

 

RESULT AND DISCUSSION 

Application of Deep Reinforcement Learning (DRL) Algorithm in Robotic 

Manipulator Control 

In recent years, Deep Reinforcement Learning (DRL) algorithms have 

become a major focus in the development of adaptive control for robotic 

manipulators. DRL leverages the ability to learn from interactions with the 

environment to optimize control strategies. The main advantage of DRL is its 

ability to handle the dynamics of non-linear and complex systems without 

requiring precise mathematical models (Calderon-Cordova & Sarango, 2023). 

This makes DRL highly relevant for robotic manipulators with many degrees of 

freedom. With various algorithms developed, DRL has proven effective in 

controlling the position, speed, and force of manipulators. This condition 

encourages more and more research and experiments to be conducted in this 

field. 

Some of the most widely applied DRL algorithms include Deep 

Deterministic Policy Gradient (DDPG), Soft Actor-Critic (SAC), and Proximal 

Policy Optimization (PPO). These three algorithms have specific characteristics 

that enable them to tackle specific challenges in robotic manipulator control. 

DDPG is known to be effective for continuous control problems, where 

manipulators require smooth and precise motion adjustments (Heaton & 

Givigi, 2023). SAC offers better stability in the learning process by utilizing the 

concept of entropy regularization, making the control policy more exploratory 

yet still safe. PPO is widely used because of its ability to combine stability and 
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training efficiency in various environmental conditions. The choice of 

algorithm is often tailored to the specific needs of the developed robotic 

application. 

The application of DRL in adaptive control provides high flexibility for 

robotic manipulators. Unlike traditional control methods that require strict 

parameter design, DRL allows robots to automatically adapt to changes in the 

environment or load. The system can learn new strategies solely through trial-

and-error, without direct human intervention (Malik et al., 2022). This is very 

useful in situations where dynamic models are difficult to formulate 

mathematically. For example, in a volatile industrial environment, DRL allows 

manipulators to adjust their controls to remain optimal. This flexibility 

becomes the main advantage of DRL compared to conventional methods. 

Based on the literature review, DRL has proven to be effective not only 

in simulation environments but is also beginning to be applied to real robotic 

manipulators. Several experiments have shown that DRL is capable of 

controlling robots stably even in the presence of disturbances or uncertainties 

in system parameters. However, direct application on physical robots requires 

special attention to safety and system stability factors. The exploration 

process conducted by the DRL algorithm can lead to undesirable movements, 

so mitigation strategies such as pre-training in simulation are highly 

recommended (Abiola et al., 2023). Additionally, additional oversight 

mechanisms are needed to avoid damage to the robot's hardware during the 

training process. This shows that although DRL is promising, its application in 

the real world requires a more cautious approach. 

The end-to-end approach in DRL is increasingly being developed in 

robotic manipulator control. In this approach, input from sensors such as 

cameras, lidar, or force sensors is processed directly by the neural network in 

DRL to generate control actions. This is different from the traditional 

approach that requires manual processing or feature extraction before 

decision-making. The advantage of this approach is the simplicity of the 

system architecture and higher adaptability. However, the main challenge of 

the end-to-end approach is the need for a very large amount of training data 

and high computational complexity (Majumder & Sahoo, 2024). Therefore, 

research is still ongoing to optimize the efficiency and reliability of this 

approach. 

In addition, the integration of DRL with conventional control systems is 

also becoming a strategy that is increasingly applied in robotic manipulator 

control. This combination aims to leverage the advantages of each approach, 
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namely the stability of conventional control and the adaptability of DRL. For 

example, the use of a PID controller as baseline control, while DRL is tasked 

with adapting parameters or adjusting certain aspects of the control. This 

approach is also useful for accelerating the DRL training process because the 

robot has a stable behavioral foundation from the beginning (Zhang & Mo, 

2023). This integration allows for a reduction in risk during experiments in real-

world environments. Several studies report positive results with this hybrid 

approach, although further testing is still needed. 

Another important aspect in the application of DRL for manipulator 

control is the adjustment to the type and configuration of the manipulator 

itself. Manipulators with two to six degrees of freedom require different 

strategies in terms of policy design and DRL parameter settings. The more 

complex the manipulator, the larger the action space dimension that must be 

managed by the DRL algorithm. This directly affects the computational load 

and the time required to achieve the optimal policy. Therefore, the design of 

the neural network architecture in DRL must be carefully adjusted to the 

configuration of the manipulator being used (Liu & Li, 2023). Recent research 

has extensively discussed network design optimization to reduce this 

complexity without compromising system performance. 

Overall, the application of DRL in robotic manipulator control has 

opened new opportunities in the development of smarter and more adaptive 

robotic systems. Although there are various challenges, the results from 

various studies indicate that DRL has great potential for widespread 

application, especially in the fields of industry and services. This application is 

not limited to position and speed control, but is also beginning to extend to 

force control, object manipulation, and human-robot interaction. With the 

continuous advancement of computing technology and more efficient DRL 

algorithms, it is hoped that the implementation of DRL-based adaptive control 

systems can become the new standard in robotics technology. Further 

research is still needed to address practical constraints and improve the 

overall system efficiency. However, the direction of the development of this 

technology shows a very positive and promising trend. 

 

Challenges and Issues in Implementing DRL in Adaptive Manipulator Control 

The implementation of Deep Reinforcement Learning (DRL) in adaptive 

control of robotic manipulators faces significant challenges related to the 

need for very large training data. The learning process in DRL requires 

thousands to millions of interaction episodes for the agent to form an optimal 
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control strategy. This certainly requires substantial computational resources, 

both in terms of time and hardware. This challenge becomes even more 

difficult when training is conducted directly on physical robots because it 

incurs operational costs and poses a risk of damage (Yan et al., 2022). 

Therefore, most research still relies on simulations as an initial stage before 

real-world implementation. However, the use of simulations is not without 

limitations, especially in terms of alignment with actual physical conditions. 

In addition to the need for data, the stability of the exploration process 

in DRL also poses a crucial challenge. DRL algorithms require exploration 

mechanisms to find the best policies, but in practice, this exploration often 

results in unexpected actions. In robotic manipulators, unstable or extreme 

actions can result in damage to mechanical components or even endanger the 

safety of the operator. This problem is exacerbated when control is 

performed in real-time without adequate safety constraints (Atti & Yogi, 

2024). Therefore, many studies propose additional safety strategies, such as 

using action clipping or integrating a safety supervisor system. These 

challenges make the development of DRL-based adaptive control require a 

more careful and systematic approach. 

The gap between training results in simulation and performance in the 

real world, known as the sim-to-real gap, becomes another major issue in the 

application of DRL for robotic manipulators. The simulations used to train DRL 

agents often do not fully represent the complexity and uncertainty of the 

physical environment (Campos et al., 2022). This causes strategies that are 

already optimal in simulation not to always work effectively when applied 

directly to physical robots. Factors such as model inaccuracies, sensor 

differences, and variations in the real environment are the main causes of this 

sim-to-real gap. Several techniques such as domain randomization and 

transfer learning have been developed to reduce this gap, but their 

effectiveness still needs to be improved. Therefore, direct testing in real 

environments remains a crucial stage before DRL is widely implemented in the 

industry. 

The next challenge is the trade-off that occurs between exploration 

and exploitation in DRL algorithms, which directly impacts the stability of the 

control policy. If the agent explores too much, the training process becomes 

slower and the resulting policy is difficult to stabilize. On the other hand, if 

exploitation is more dominant, the agent may not find a truly optimal policy 

because it stops learning too quickly. This trade-off is very important to 

consider in the context of robotic manipulator control, as motion stability 
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significantly affects system safety and performance (Bashendy et al., 2024). 

Parameter settings such as learning rate, entropy coefficient, and exploration 

noise are key to maintaining the balance between exploration and 

exploitation. However, the tuning process itself requires specialized expertise 

and often takes a considerable amount of time. 

The complexity of the structure and dynamics of robotic manipulators 

also adds challenges in the application of DRL. The more degrees of freedom 

the manipulator has, the larger the dimensions of the action space and state 

space that the DRL agent must learn (Arshad & Bazzocchi, 2024). This leads to 

an increase in computational load and difficulty in achieving stable policy 

convergence. Additionally, changes in load or external disturbances can 

worsen the stability of the system if the trained control policy is not robust 

enough. Therefore, special strategies are needed, such as the use of 

hierarchical reinforcement learning or modular control, which divide control 

tasks into simpler sub-tasks. This approach aims to reduce complexity and 

improve the efficiency of the training process. 

On the other hand, the limited interpretability of policies generated by 

DRL has become one of the important issues that are often overlooked. Unlike 

traditional control methods that have a clear mathematical basis, DRL policies 

often take the form of non-linear functions that are difficult to analyze or 

intuitively understand. This complicates the processes of debugging, error 

analysis, as well as verification and validation of control systems, especially in 

industrial contexts that require high safety standards. Some approaches, such 

as explainable reinforcement learning, have begun to be introduced to 

address this issue, but they still require further development. Without 

adequate interpretability, user trust in DRL-based adaptive control systems 

becomes limited (Zeng et al., 2023). Therefore, this aspect needs to receive 

special attention in further research. 

Besides technical factors, the challenges in implementing DRL are also 

related to the cost and infrastructure aspects required. The development and 

implementation of DRL for robotic manipulators require supporting hardware, 

such as high-capacity GPUs, precise sensors, and realistic simulation devices. 

This investment is not always affordable, especially for medium and small-

scale industries that want to implement adaptive robotic technology. This has 

become one of the factors limiting the adoption of DRL in the broader 

industrial sector (Yang et al., 2024). Therefore, efforts are needed to develop 

lighter and more efficient algorithms so that they can be implemented with 
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more limited resources. Innovations in the field of hardware can also help 

reduce these barriers in the future. 

Overall, the challenges discussed indicate that the application of DRL in 

adaptive control of robotic manipulators still requires significant 

improvements, both in terms of algorithms, system architecture, and practical 

implementation. Nevertheless, the continuous development of technology 

and research opens up opportunities to gradually overcome these challenges. 

The main focus moving forward is to develop DRL algorithms that are more 

sample-efficient, safe, and easy to implement across various types of 

manipulators with different levels of complexity. Additionally, collaboration 

between algorithm developers, robotic engineers, and industry practitioners is 

key to accelerating the real-world adoption of this technology. With a 

systematic and collaborative approach, DRL-based adaptive control has great 

potential to become one of the standards in the control of future robotic 

manipulators. 

 

Integration of Hybrid Control Strategies and Future Research Directions 

The integration between Deep Reinforcement Learning (DRL) and 

conventional control methods is increasingly being applied as a solution to the 

limitations of each approach. Conventional control methods such as PID 

(Proportional-Integral-Derivative) are known for their high stability and 

reliability, but they are less flexible in adapting to environmental changes. 

Meanwhile, DRL offers high adaptability, but still faces challenges related to 

stability and the need for large amounts of data. By combining both, the 

control system can leverage the advantages of both methods simultaneously 

(Feng et al., 2023). In practice, conventional control usually serves as baseline 

control, while DRL adjusts parameters or optimizes specific parts of the 

system. This approach not only improves performance but also accelerates 

the learning process because the robot does not need to learn from scratch. 

One of the most researched forms of integration is the combination of 

Model Predictive Control (MPC) with DRL. MPC is known for its ability to 

predict system behavior several steps ahead and optimize actions based on 

those predictions. When combined with DRL, MPC plays a role in maintaining 

the stability and safety boundaries of the system, while DRL manages more 

flexible long-term policies. This approach has proven effective in reducing risk 

during the exploration phase, especially when applied directly to physical 

robotic manipulators (Xiao, 2023). Several studies show that the integration of 

MPC-DRL can enhance energy efficiency while maintaining the accuracy of 
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position and force control. Nevertheless, this integration requires more 

complex calculations and more careful system design. 

Hierarchical Reinforcement Learning (HRL) and Meta-Reinforcement 

Learning (Meta-RL) are other approaches that are beginning to be applied to 

enhance the efficiency and flexibility of adaptive control. HRL divides control 

tasks into several hierarchical levels, where the upper level determines long-

term goals and the lower level manages specific actions. In this way, the 

complexity of the action space can be reduced, thereby accelerating the 

learning process and enhancing policy stability (Shen et al., 2022). Meanwhile, 

Meta-RL allows the learning system to learn, that is, to adapt more quickly to 

new environments with previous experiences. This approach is highly relevant 

in the context of robotic manipulators that must operate in various situations 

with different characteristics. The development of HRL and Meta-RL is still in 

its early stages, but its potential is quite promising for widespread application. 

In addition to the development of algorithmic structures, much 

research also focuses on improving sample efficiency and the convergence 

speed of DRL. Algorithms such as Twin Delayed Deep Deterministic Policy 

Gradient (TD3) and Soft Actor-Critic (SAC) have been developed to address 

the issue of overestimation bias and enhance learning stability. Modifications 

such as adjusting the learning rate parameters, entropy regularization, and the 

use of more sophisticated replay buffers continue to be explored. The main 

goal is to reduce the amount of data required so that the system can learn 

effective control policies (Majumder & Sahoo, 2024). This is very important in 

the context of robotic manipulators because the process of collecting data 

from the real world requires significant time and cost. With more efficient 

algorithms, it is hoped that the application of DRL in the industry can become 

more practical and affordable. 

Future research trends are also directed towards reducing the sim-to-

real gap, which has been the main obstacle to implementing DRL in real-world 

environments. Techniques such as domain randomization, where various 

environmental parameters are randomized during simulation, aim to make 

DRL agents more robust when transferred to the physical world. Additionally, 

transfer learning methods and direct policy fine-tuning on physical robots are 

also beginning to be implemented to accelerate the adaptation process. Other 

research focuses on the development of more realistic and accurate 

simulators to approximate actual physical conditions. Although progress has 

been made, the challenge of ensuring that policies trained in simulation 

remain effective and safe in the real world continues to be a major concern 
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(Sehgal et al., 2022). Therefore, sim-to-real transfer will remain one of the 

priorities in the development of DRL-based adaptive control systems. The 

issue of interpretability of control policies is also an important concern in the 

development of DRL for robotic manipulators. The policies generated by DRL 

often take the form of complex non-linear functions that are difficult for 

humans to analyze. In the industrial context, where safety and reliability are 

crucial, the inability to understand how policies work becomes a serious 

obstacle. Therefore, research is beginning to focus on the development of 

explainable reinforcement learning (XRL), which aims to make DRL policies 

more transparent and logically explainable. Techniques such as neural 

network visualization, dimensionality reduction, and the use of interpretable 

models as proxies have begun to be introduced (Wang et al., 2024). With the 

increasing need for auditable and accountable control systems, the 

development of XRL will become an important part of future research 

directions. 

In addition to technical aspects, attention is also being given to the 

development of safer and industry-compliant adaptive control systems based 

on DRL. Several international robotic safety standards require strict validation 

and verification of control systems before they are commercially 

implemented. Therefore, the integration of hybrid DRL control with 

monitoring mechanisms or fail-safe systems is becoming an increasingly 

relevant topic. Research has begun to combine DRL with formal methods and 

logic-based control to ensure that the system remains within the established 

safety boundaries (Zhong et al., 2024). This is important for building trust from 

the industrial sector towards new technologies such as DRL. Thus, the 

development of safe and standardized systems becomes part of the long-term 

research strategy. 

Overall, the integration of hybrid control strategies between DRL and 

conventional methods opens up significant opportunities to enhance the 

performance of robotic manipulators in various industrial sectors. The 

direction of future research not only focuses on improving the efficiency and 

stability of algorithms but also on developing systems that can be practically 

applied and meet existing safety standards. With the continuous advancement 

of technology and collaboration between academics, industry practitioners, 

and technology developers, it is hoped that DRL-based adaptive control can 

become an integral part of future robotic systems. Innovation in the fields of 

hardware, algorithms, and simulation methodologies will also play a crucial 

role in accelerating the adoption of this technology. Therefore, the 
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development of hybrid control strategies with DRL remains one of the most 

dynamic and relevant research fields to this day. 

 

CONCLUSION 

Based on the literature review conducted, it can be concluded that 

adaptive control strategies for robotic manipulators using Deep 

Reinforcement Learning (DRL) show great potential in enhancing the 

flexibility and efficiency of control systems. Algorithms such as DDPG, SAC, 

and PPO have proven capable of handling non-linear dynamics and 

environmental uncertainties without requiring an explicit dynamic model. 

However, there are several main challenges such as the need for large training 

data, the stability of the exploration process, and the gap between simulation 

results and real-world applications (sim-to-real gap). The integration of hybrid 

control, the development of more sample-efficient algorithms, and 

approaches such as hierarchical reinforcement learning have become widely 

researched trends to address these issues. These findings have important 

implications for the future development of robotic control systems, 

particularly in realizing manipulators that are more adaptive, safe, and easy to 

implement across various industrial sectors. 

As a recommendation for further research, it is necessary to focus on 

the development of DRL algorithms with higher data efficiency to reduce 

computational load and risk in the training process. Techniques such as 

transfer learning, meta-reinforcement learning, and the use of more efficient 

replay buffers can be the focus of the next development. Additionally, it is 

important to conduct direct validation in real environments to ensure that the 

control policies trained in simulations can function well and safely when 

applied. Research is also advised to pay more attention to the aspects of 

interpretability and system security, particularly in the context of industrial 

applications. With this development direction, it is hoped that DRL-based 

adaptive control can become increasingly effective, efficient, and reliable to 

support the needs of modern robotic systems. 
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