DESIGN OF AN AI-POWERED PREDICTIVE MAINTENANCE SYSTEM FOR INDUSTRIAL IOT NETWORKS

e-ISSN: 3030-802X

Dhiraj Kelly Sawlani*

Sekolah Tinggi Kepemerintahan dan Kebijakan Publik, Indonesia E-mail: dhirajkelly@gmail.com

Sukril Rahman Zega

Universitas Pembangunan Panca Budi, Indonesia E-mail: sukrilrahman1984@gmail.com

M.Ridho

Universitas Pembangunan Panca Budi, Indonesia E-mail: akuridho96@gmail.com

Abstract

The Industrial Revolution 4.0 presents new challenges in industrial asset management, particularly regarding equipment maintenance. Traditional maintenance approaches, both reactive and preventive, have proven to be less efficient because they cause downtime and waste costs. Therefore, predictive maintenance emerges as a promising solution through the utilization of the Internet of Things (IoT) for real-time data collection and Artificial Intelligence (AI) for failure pattern analysis. This article presents a literature review on the design of an Al-based predictive maintenance system integrated with an industrial IoT network. The study was conducted by searching literature from reputable databases such as IEEE Xplore, ScienceDirect, ACM, and Springer, using the keywords "Predictive Maintenance", "AI", "IoT", "Industrial IoT", and "Machine Learning". The review results show that classic machine learning algorithms (e.g., Random Forest, SVM, and Decision Tree) are capable of making predictions with structured data, while deep learning approaches (LSTM, CNN, Autoencoder) are superior in processing complex and time-series data. Nevertheless, challenges still exist in the aspects of IoT device interoperability, data security, limitations of failure datasets, and the need for energy efficiency for realtime processing. This literature review contributes to summarizing the trends, advantages, and limitations of AI methods used in industrial IoT predictive maintenance. Future development potential includes the application of Edge AI for efficient computing, Federated Learning for data privacy, and Digital Twin integration to improve the accuracy of predictive simulations. By addressing these challenges, Al-powered predictive maintenance systems are expected to become a key pillar in

supporting reliable, efficient, and highly competitive industrial performance in the digital age.

Keywords: Predictive Maintenance, Artificial Intelligence, Internet of Things, Industrial IoT, Deep Learning

INTRODUCTION

Industry 4.0 brings significant changes to how companies manage production processes and machine maintenance. Digital technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Big Data are becoming the backbone of this revolution. One important aspect is how companies maintain equipment availability to ensure it remains reliable (Aldeoes et al., 2023). In this context, maintenance becomes a key factor in maintaining productivity. Companies that fail to perform effective maintenance will suffer significant losses due to machine downtime. Therefore, a modern maintenance approach is highly needed.

Predictive maintenance is becoming one of the fastest-growing strategies in the era of Industry 4.0. Unlike reactive maintenance, which waits for damage to occur, predictive maintenance uses data to predict failures. Thus, companies can repair machines before fatal damage occurs (Mahadev et al., 2024). This strategy proved to be more cost-effective because it reduced downtime and major repair costs. Additionally, the lifespan of the machine can be extended with timely intervention. This is why predictive maintenance is being increasingly implemented in industry.

loT plays a significant role in supporting predictive maintenance strategies. Sensors installed on the machine can collect real-time data, such as vibration, temperature, pressure, and humidity. This data is then sent to the central system for analysis. With IoT connectivity, machine condition monitoring can be done continuously without interruption (Ghosh, 2024). This allows for early detection of potential damage. By doing so, the company can anticipate problems before production is disrupted.

Traditional maintenance is usually performed on a schedule without considering the actual condition of the machine. This method is known as preventive maintenance, which still has inherent weaknesses. The machine can be maintained even though it's actually still in good condition. This leads to a waste of resources and operational costs. On the other hand, if maintenance schedules are delayed, the machine could potentially break down suddenly. This condition is driving companies to seek data-driven alternatives (Mohapatra, 2024).

Al is a promising solution for improving the effectiveness of predictive maintenance. With machine learning algorithms, sensor data can be processed to find patterns of damage. Techniques like regression, classification, and clustering help detect anomalies in machine performance. Meanwhile, deep learning techniques like LSTM are capable of processing time-series data for more accurate predictions (Srivastav & Das, 2024). The results of Al analysis allow the system to provide accurate treatment recommendations. Thus, the reliability of the machine can be optimally maintained.

However, the application of AI in predictive maintenance is not without its challenges. One of these is the need for large and high-quality datasets to train the models. Many industries face the problem of imbalanced data, where there is far less data on defects than on normal data. This makes AI models prone to bias and less accurate (Nagaraj, 2023). Additionally, the computational cost of processing big data is also quite high. This factor is a barrier for small companies to adopt it.

Another challenge lies in the interoperability of IoT devices. Devices from different vendors often use different communication standards. As a result, system integration becomes complex and requires middleware solutions. Without good interoperability, data is difficult to combine for comprehensive analysis. This impacts the accuracy of machine failure predictions (Keshwani et al., 2024). Therefore, open communication standards for industrial IoT are still an urgent need.

Data security is also a crucial issue in IoT and AI-based predictive maintenance. Thousands of connected devices increase the risk of cyberattacks. If the system is compromised, sensor data can be manipulated or stolen. The impact is not only data loss, but also the potential for industrial operational sabotage (Sharma & Aslekar, 2022). Therefore, the integration of cybersecurity technology is crucial in the design of predictive maintenance systems. This ensures the safe operational continuity of the industry.

From an economic perspective, predictive maintenance offers significant benefits to companies. By reducing downtime, companies can increase productivity and profits. Maintenance costs are also more efficient because repairs are only done when absolutely necessary. This differs from traditional maintenance, which is often cost-inefficient (Juliet et al., 2024). Additionally, companies can extend the lifespan of industrial assets with timely intervention. It is these benefits that make many sectors interested in adopting it.

Overall, AI and IoT-based predictive maintenance is the future solution for Industry 4.0. This combination of technologies addresses the inefficiency of traditional methods. By leveraging real-time data and intelligent algorithms, industries can predict and prevent damage before it occurs. Challenges such as interoperability, security, and cost still need to be addressed through further research. However, the direction of technological development shows great potential for its application. This is what makes the literature review on the design of this system so relevant.

RESEARCH METHOD

This literature review was conducted using a systematic approach by searching for scientific articles in reputable databases such as IEEE Xplore, ScienceDirect, ACM Digital Library, and SpringerLink. These sources were chosen because they have a cutting-edge research collection in the fields of industrial technology, IoT, and artificial intelligence. The search process was conducted using specific keywords, including "Predictive Maintenance," "AI," "IoT," "Industrial IoT," and "Machine Learning." The selection of these keywords aimed to identify literature relevant to the topic of AI-powered predictive maintenance system design. All articles found were then screened to ensure their relevance to the research context. Thus, the literature used truly supports a comprehensive analysis.

In the selection process, inclusion and exclusion criteria are established to maintain the quality of the review. The selected articles generally come from the last 5-10 years, making them still relevant to the latest technological developments in the Industry 4.0 era. Additionally, the main focus is on research that addresses real-world implementation in industry, rather than just simulation-based or theoretical studies. After the selection process, the collected articles were analyzed by grouping the AI approaches used, such as machine learning, deep learning, and hybrid approaches. From each group, the advantages, disadvantages, and limitations faced within the context of predictive maintenance were reviewed. With this method, a literature review can provide a comprehensive overview of research trends while also identifying gaps for future system development (Snyder, 2019; Tranfield et al., 2003).

RESULT AND DISCUSSION

Integrating IoT and AI in Predictive Maintenance

The Internet of Things (IoT) plays a crucial role in providing real-time data from various industrial sensors. Sensors can monitor variables such as vibration, temperature, pressure, electrical current, and even machine humidity. The data generated is continuous and in large quantities. This information is crucial for understanding the actual condition of the engine in detail. Without IoT, monitoring can only be done manually with limited frequency (Aldeoes et al., 2023). Therefore, IoT is becoming the main foundation for building predictive maintenance systems.

Artificial Intelligence (AI) complements the role of IoT with data analysis capabilities. AI can recognize patterns in sensor data that are invisible to humans. With machine learning algorithms, AI can classify machine conditions as normal or abnormal. Deep learning techniques can even predict when a machine will fail based on historical patterns. This integration results in a system that not only records data but also provides insights (Paroha, 2024). This way, maintenance decisions can be made faster and more accurately.

The integration of IoT and AI is driving a paradigm shift from reactive maintenance to predictive maintenance. Previously, maintenance was performed after damage occurred or according to a specific schedule. This often leads to wasted costs and long downtimes. With a predictive approach, repairs are only performed if there are clear indications of damage. As a result, operational costs become more efficient and machine availability increases (Rebahi et al., 2023). Therefore, predictive maintenance is increasingly considered the ideal solution in the era of Industry 4.0.

One of the advantages of this integration is its ability to reduce machine downtime. The system can provide early warnings before damage occurs. Thus, companies can plan maintenance without disrupting production flow. This increases productivity while reducing losses due to production downtime (Abbas, 2024). Additionally, the lifespan of the machine can be extended through timely intervention. These advantages make the integration of IoT and AI increasingly sought after.

Although promising, there are a number of challenges in its implementation. First, the data generated by IoT sensors is extremely large and varied. This poses problems for data storage and processing. Second, the need for real-time processing demands reliable computing infrastructure. Third, edge devices often have limited computing power to run complex AI

algorithms. These challenges need to be overcome for the system to run optimally (Devi et al., 2024).

One solution to overcome the limitations is the use of edge computing. With edge computing, some data is processed directly near IoT devices. This reduces the burden of sending data to the cloud and speeds up system responses. However, the limited capacity of edge devices requires Al algorithms to be optimized. A lightweight and efficient model is key to being able to run it locally. This innovation paves the way for the large-scale application of AI in industry (Kumar & Tiwari, 2024).

Besides edge computing, fog and cloud computing approaches also support the integration of IoT and AI. Complex data can be processed in the cloud using large computing resources. Meanwhile, data requiring quick responses can be handled at the edge or fog. This combination allows the system to be flexible in processing various types of data. With hybrid architecture, companies can balance the need for speed and accuracy (Dey & Nagavalli, 2022). This makes integration more adaptable to the diverse needs of industries.

Overall, the integration of IoT and AI in predictive maintenance brings significant changes to the management of industrial equipment. The system is not only capable of detecting anomalies, but also of predicting when damage might occur. This helps companies perform smarter and more efficient maintenance. Despite technical challenges, the direction of technological development shows a positive trend. With innovations in edge AI, federated learning, and digital twins, this system will become increasingly mature. Therefore, the integration of IoT and AI is becoming an essential foundation for the success of Industry 4.0.

Al Methods for Failure Prediction and Diagnosis

In the context of predictive maintenance, artificial intelligence (AI) is at the core of analyzing data from IoT sensors. This data often takes the form of time series related to machine conditions over time. AI can detect anomalies, classify machine conditions, and even predict when failures will occur. This advantage makes AI very important for replacing slow and less accurate manual methods. With AI, maintenance decisions can be made based on real data (Gaddam, 2023). This encourages the creation of a more efficient and precise maintenance system.

Classic machine learning algorithms such as Random Forest, Support Vector Machine (SVM), and Decision Tree are often used in predictive maintenance. Random Forest is known for its effectiveness in handling data with many variables. SVM is excellent at separating data into normal and abnormal classes. Decision Tree is simple but can provide clear interpretations of prediction results. This method is generally used when the dataset is structured and has clear features. Thus, classical machine learning is suitable for industrial cases with relatively clean sensor data (Chawla et al., 2023).

Besides classical methods, Deep Learning (DL) offers deeper capabilities in processing complex data. Algorithms like Long Short-Term Memory (LSTM) excel at analyzing long time series data. While Convolutional Neural Networks (CNNs) can be used to detect patterns from sensor data, whether signals or images. Autoencoders are useful in detecting anomalies by reconstructing normal data and comparing it to the actual conditions. Deep learning is capable of identifying non-linear patterns that are difficult to recognize using traditional methods (Subbiah et al., 2024). Therefore, DL has become the primary choice in modern research on predictive maintenance.

Although effective, the application of deep learning faces several limitations. Models like LSTM and CNN require large datasets to achieve optimal accuracy. This poses a challenge in the industry, as machine damage data is often scarce compared to normal condition data. This situation leads to the problem of imbalanced data, which can cause the model to be biased towards the normal class. Additionally, data labeling also requires high technical expertise (Deepan et al., 2024). Therefore, many studies attempt to address this issue using oversampling techniques or synthetic data generation.

From a computational perspective, deep learning algorithms require significant resources. Training models requires expensive GPUs or cloud infrastructure. For small or medium-sized industries, this can be a significant obstacle. However, the development of edge AI and lightweight models offers solutions to reduce computational requirements. This model is designed to run on devices with limited resources (Matos, 2023). With this approach, the application of AI can be more inclusive for various industrial sectors.

Besides prediction accuracy, model interpretability is also an important issue. Classic machine learning algorithms tend to be easier for industrial technicians to understand. Meanwhile, deep learning is often considered a black box that is difficult to explain. This can raise doubts about its implementation, especially in sectors that require high transparency. Therefore, a new approach called Explainable AI (XAI) has emerged to improve understanding of prediction results. With XAI, users can have more confidence in the AI systems they use (Gupta & Kaur, 2024).

Al methods can also be integrated through a hybrid approach. Some studies combine machine learning and deep learning to maximize results. For example, CNNs can be used for feature extraction, and then the results are processed with SVM for classification. This hybrid approach allows the system to gain the advantages of each method (Sangwan, 2024). Additionally, integration with traditional statistical methods can also improve reliability. Thus, predictive maintenance systems become more adaptive and flexible.

Overall, AI methods make a significant contribution to improving the accuracy and efficiency of predictive maintenance. Classical machine learning is more suitable for cases with small and structured datasets, while deep learning excels with complex and large data. The main challenges that need to be addressed include the need for big data, high computing power, and model interpretability. However, the development of edge AI, XAI, and hybrid models provides a new and more promising direction. With the right combination, AI can become the backbone of modern predictive maintenance systems. This opens up opportunities for the industry to enhance its competitiveness in the digital age.

Challenges and Future Research Directions

Although AI and IoT-based predictive maintenance holds great promise, its implementation still faces several significant obstacles. One of these is the issue of interoperability between IoT devices from different vendors. These devices often use different communication protocols, making integration difficult. This condition hinders the comprehensive and consistent collection of data. In fact, good data quality is essential for training AI models (Bhambri & Kumar, 2024). Therefore, open communication standards still need to be developed for the system to run harmoniously.

Data security is also a major challenge in the integration of IoT and AI. The large number of devices connected in industrial networks increases the risk of cyberattacks. Compromised sensor data can lead to incorrect predictions, potentially resulting in sabotage of industrial operations. Threats such as malware, spoofing, and denial of service (DoS) are real risks that must be anticipated (Tripathi, 2024). Therefore, the design of a predictive maintenance system must integrate robust safety mechanisms from the outset. Without adequate protection, the system's benefits cannot be maximized.

Besides security, energy efficiency is also a significant concern. Realtime data processing requires significant computing power, especially when using deep learning algorithms. Edge devices or gateways are often limited in terms of battery capacity and energy consumption. If the system is not designed efficiently, operational costs can increase significantly. This condition can hinder adoption in medium to low-scale industries (Kamgba, 2024). Therefore, research is needed on more energy-efficient AI models.

One potential research direction is the development of Edge AI. With Edge AI, most data processing is done directly on devices near the sensors. This reduces the need to send all data to the cloud, thus saving bandwidth and energy. However, challenges arise because edge devices have limited computing resources. Researchers need to develop lightweight yet accurate algorithms (Sharanya et al., 2022). In this way, energy efficiency can be achieved without sacrificing prediction quality.

Additionally, the concept of Federated Learning is also a promising research direction. Federated Learning allows AI models to be trained in a distributed manner across various devices, without the need to send raw data to a central server. This approach enhances data privacy and security because sensitive information remains on the originating device (Mehta, 2024). Additionally, the computational load can be divided across many nodes, making it more efficient. However, the challenges of coordinating and synchronizing the models still need to be solved. If successful, this method will be the ideal solution for industrial IoT.

Integration with Digital Twins also offers exciting prospects for predictive maintenance. Digital Twins allow for the virtual replication of physical machines that are continuously updated with real-time data. With this approach, failures can be predicted through simulation without disrupting real operations. AI can analyze virtual models to identify weaknesses before they impact physical machines (Pohakar et al., 2024). This increases the accuracy of predictions while reducing the risk of direct field experiments. Therefore, research on the integration of AI, IoT, and Digital Twins continues to develop rapidly.

Another challenge that needs to be considered is the limited availability of machine failure data. In practice, damage data is relatively scarce compared to normal condition data. This makes AI models vulnerable to data imbalance issues. Some approaches like synthetic data generation or data augmentation need further research (Saboo & Shekhawat, 2024). With this technique, the dataset can be expanded to train more reliable models. The direction of this research is important so that AI can predict failures more accurately.

Overall, despite the significant challenges that remain, the direction of future research points to very promising opportunities. Focusing on interoperability, data security, energy efficiency, and AI model innovation will drive the maturity of predictive maintenance technology. The integration of Edge AI, Federated Learning, and Digital Twins will strengthen systems to make them more adaptive and resilient. If the challenges can be overcome, predictive maintenance systems will become the new standard in Industry 4.0. This not only reduces costs and downtime but also enhances global competitiveness. Thus, research in this field will remain relevant and become increasingly important.

CONCLUSION

This literature review confirms that the integration of IoT and Al significantly contributes to the development of predictive maintenance systems in the Industry 4.0 era. IoT acts as a real-time data collector from machines and infrastructure, while Al processes the data to detect patterns, analyze anomalies, and predict potential failures. Various Al methods, ranging from classic machine learning to deep learning, have been used to improve the accuracy and efficiency of predictions. The contribution of this literature review is to provide a comprehensive overview of research trends, strengths, and limitations of existing approaches. Based on this, further research can take a more focused direction to improve the performance of the predictive maintenance system.

The potential of AI in strengthening predictive maintenance for industrial IoT is immense, particularly in reducing downtime, lowering operational costs, and extending machine lifespan. However, there are still several open research areas, such as the interoperability of IoT devices, data security, the limitations of failure datasets, and the need for energy efficiency in edge computing. Future research can focus on developing lightweight Edge AI, utilizing Federated Learning for data privacy, and integrating with Digital Twins to improve simulation accuracy. By addressing these challenges, predictive maintenance will become increasingly mature and ready to become the new standard in modern industrial asset management.

REFERENCES

abbas, asad. (2024). AI for Predictive Maintenance in Industrial Systems. Query date: 2025-10-01 20:30:36. https://doi.org/10.31219/osf.io/vq8zg

- Aldeoes, Y. N., Gokhale, P., & Sondkar, S. Y. (2023). A Review of Predictive Maintenance of Bearing Failures in Rotary Machines by Predictive Analytics Using Machine-Learning Techniques. Signals and Communication Technology, Query date: 2025-10-01 20:30:36, 115–138. https://doi.org/10.1007/978-3-031-29713-7 6
- Bhambri, P., & Kumar, S. (2024). Cloud and IoT Integration for Smart Healthcare. Smart Healthcare Systems, Query date: 2025-10-01 20:30:36, 69–84. https://doi.org/10.1201/9781032698519-6
- Chawla, H. S., Veerasamy, K., Patil, S. R., Sivakumar, V., Shunmugapriya, B., & Krishna, C. B. (2023). Al-Enabled Predictive Analytics for Proactive Maintenance in IoT Systems. 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), 9(Query date: 2025-10-01 20:30:36), 1791–1795. https://doi.org/10.1109/ic3i59117.2023.10398098
- Deepan, S., Buradkar, M., Akhila, P., Kumar, K. S., Sharma, M. K., & Chakravarthi, M. K. (2024). Al-Powered Predictive Maintenance for Industrial IoT Systems. 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Query date: 2025-10-01 20:30:36, 1–6. https://doi.org/10.1109/accai61061.2024.10601983
- Devi, E. M. R., Shanthakumari, R., Dhanushya, S., & Kiruthika, G. (2024). Al Models for Predictive Maintenance. Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing, Query date: 2025-10-01 20:30:36, 69–94. https://doi.org/10.1201/9781003480860-5
- Dey, S., & Nagavalli, S. P. (2022). Al-Based Predictive Maintenance in Edge IoT Devices: A Proactive Approach to Latency Reduction. International Journal of Emerging Trends in Computer Science and Information Technology, 3(1), 55–64. https://doi.org/10.63282/3050-9246.ijetcsit-v3i1p107
- Gaddam, N. (2023). AI-DRIVEN PREDICTIVE MAINTENANCE FOR AEROSPACE IOT SENSORS. ISCSITR INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN INFORMATION TECHNOLOGY, 4(1), 1–15. https://doi.org/10.63397/iscsitr-ijsrit_04_01_001
- Ghosh, D. (2024). Enhancing Security, Privacy, and Predictive Maintenance through IoT and Big Data Integration. Internet of Things and Big Data Analytics-Based Manufacturing, Query date: 2025-10-01 20:30:36, 209–217. https://doi.org/10.1201/9781032673479-17
- Gupta, K., & Kaur, P. (2024). Application of Predictive Maintenance in Manufacturing with the utilization of AI and IoT Tools. Query date: 2025-10-01 20:30:36. https://doi.org/10.36227/techrxiv.173532375.50630906/v1
- Juliet, A. H., Legapriyadharshini, N., & Malathi, P. (2024). IoT Enhanced Resilience: Advanced AI Technique for Leak Detection and Predictive Maintenance in Oil and Gas Pipeline. 2024 10th International Conference

- on Communication and Signal Processing (ICCSP), Query date: 2025-10-01 20:30:36, 1338–1343. https://doi.org/10.1109/iccsp60870.2024.10544329
- Kamgba, R. B. (2024). Development of Predictive Maintenance Technologies for Critical Industrial Systems Using AI and IoT. Query date: 2025-10-01 20:30:36. https://doi.org/10.22541/au.172172848.85394455/v1
- Keshwani, P., Gehani, H., & Agrawal, P. K. (2024). Introduction to the Integration of AI, IoT, and Cloud Computation for Social Welfare. Developing AI, IoT and Cloud Computing-Based Tools and Applications for Women's Safety, Query date: 2025-10-01 20:30:36, 1–18. https://doi.org/10.1201/9781003538172-1
- Kumar, P., & Tiwari, R. (2024). Al-Based Predictive Maintenance for Industrial IOT Applications. International Academic Journal of Science and Engineering, 11(4), 10–15. https://doi.org/10.71086/iajse/v11i4/iajse1164
- Mahadev, N., Premkumar, A., Sowmya, V. L., & Natarajan, R. (2024). Exploring Al and IoT Integration for Medicine Recommendation with Chimp Optimized Dynamic XGBoost (CO-DXB). Information Systems Engineering and Management, Query date: 2025-10-01 20:30:36, 23–31. https://doi.org/10.1007/978-3-031-65022-2_2
- Matos, I. de. (2023). Análise Preditiva com IA na Manutenção de Frotas:
 Redução de Custos e Ganhos de Eficiência. RCMOS Revista Científica
 Multidisciplinar O Saber, 1(1).
 https://doi.org/10.51473/rcmos.v1i1.2023.1397
- Mehta, V. H. (2024). Enhancing Equipment Reliability and Reducing Maintenance Costs with MSET2: A Predictive Maintenance Approach Using IoT Sensor Data. SSRN Electronic Journal, Query date: 2025-10-01 20:30:36. https://doi.org/10.2139/ssrn.4951531
- Mohapatra, A. (2024). Generative AI for Predictive Maintenance: Predicting Equipment Failures and Optimizing Maintenance Schedules Using AI. International Journal of Scientific Research and Management (IJSRM), 12(11), 1648–1672. https://doi.org/10.18535/ijsrm/v12i11.eco3
- Nagaraj, A. (2023). Integration of AI and IoT-cloud. The Role of AI in Enhancing IoT-Cloud Applications, Query date: 2025-10-01 20:30:36, 116–165. https://doi.org/10.2174/9789815165708123010008
- Paroha, A. D. (2024). Advancing Predictive Maintenance in the Oil and Gas Industry: A Generative Al Approach with GANs and LLMs for Sustainable Development. Communications in Computer and Information Science, Query date: 2025-10-01 20:30:36, 3–15. https://doi.org/10.1007/978-3-031-71729-1_1
- Pohakar, P. Y., Gandhi, R., & Champaty, B. (2024). Enhancing Grid Reliability and Renewable Integration Through Al-Based Predictive Maintenance. Advances in Computational Intelligence and Robotics, Query date: 2025-10-01 20:30:36, 47–62. https://doi.org/10.4018/979-8-3693-1586-6.ch003

- Rebahi, Y., Hilliger, B., Lowin, P., & Cardoso, A. (2023). Al Based Predictive Maintenance as a Key Enabler for Circular Economy: The KYKLOS 4.0 Approach. 2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT), Query date: 2025-10-01 20:30:36, 367–372. https://doi.org/10.1109/dcoss-iot58021.2023.00066
- Saboo, S., & Shekhawat, D. (2024). Enhancing Predictive Maintenance in an Oil & Gas Refinery Using IoT, AI & ML: An Generative AI Solution. International Petroleum Technology Conference, Query date: 2025-10-01 20:30:36. https://doi.org/10.2523/iptc-23466-ms
- Sangwan, A. (2024). Building Predictive Models for Cardiovascular Health. Information Systems Engineering and Management, Query date: 2025-10-01 20:30:36, 329–356. https://doi.org/10.1007/978-3-031-65022-2 19
- Sharanya, S., Venkataraman, R., & Murali, G. (2022). Edge Al: From the Perspective of Predictive Maintenance. *Applied Edge Al*, Query date: 2025-10-01 20:30:36, 171–192. https://doi.org/10.1201/9781003145158-7
- Sharma, A., & Aslekar, A. (2022). IOT Based Predictive Maintenance in Industry 4.0. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC), 12(Query date: 2025-10-01 20:30:36), 143–145. https://doi.org/10.1109/iihc55949.2022.10059639
- Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. *Journal of Business Research*, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
- Srivastav, Dr. A. K., & Das, Dr. P. (2024). Integration of AI and IoT in Healthcare 4.0. Emerging Technologies in Healthcare 4.0, Query date: 2025-10-01 20:30:36, 115–130. https://doi.org/10.1007/979-8-8688-1014-5_4
- Subbiah, M. R., Devi, K., M, D., Shareef, A. M., Al-Shaikhli, T. R., & Nidamanuri, S. (2024). Al-Enabled Predictive Maintenance for Industrial Equipment in the Era of IoT. 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Query date: 2025-10-01 20:30:36, 1–5. https://doi.org/10.1109/iconstem60960.2024.10568814
- Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375
- Tripathi, R. K. P. (2024). Data Analytics and AI for Predictive Maintenance in Pharmaceutical Manufacturing. Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing, Query date: 2025-10-01 20:30:36, 117–149. https://doi.org/10.1201/9781003480860-7