COMPARISON OF DECISION TREE AND RANDOM FOREST ALGORITHMS IN PREDICTING STUDENT GRADUATION BASED ON ACADEMIC DATA

Authors

  • Marlan Marlan Universitas Nasional, Indonesia Author
  • Ahmad Rifqi Universitas Nasional, Indonesia Author
  • Agus Iskandar Universitas Nasional, Indonesia Author

Keywords:

Decision Tree, Random Forest, Graduation Prediction, Academic Data, GPA, Credit Hour

Abstract

This research aims to compare the performance of the Decision Tree and Random Forest algorithms in predicting student graduation based on academic data. By utilizing data such as Grade Point Average (GPA), the number of credit hours, and course grades, this study focuses on analyzing the accuracy of both algorithms in predicting students who are at risk of not graduating on time. The results of the study indicate that the Random Forest algorithm achieves higher accuracy compared to the Decision Tree, particularly in terms of recall and precision. While Decision Tree is simpler and easier to interpret, it tends to have overfitting issues that can affect prediction results. In contrast, Random Forest overcomes these issues by producing more stable predictions through an ensemble process. This study is expected to contribute to the development of student graduation prediction systems in educational institutions. As such, institutions can use these findings as a foundation for designing intervention strategies for students at risk of not graduating on time.

Downloads

Download data is not yet available.

References

Amri, Z., Kusrini, K., & Kusnawi, K. (2023). Prediksi Tingkat Kelulusan Mahasiswa menggunakan Algoritma Naïve Bayes, Decision Tree, ANN, KNN, dan SVM. Edumatic: Jurnal Pendidikan Informatika, 7(2), 187–196. https://doi.org/10.29408/edumatic.v7i2.18620

Budiyantara, A., & A, I. (2018). Prediksi Mahasiswa Lulus Tepat Waktu. Infotech: Journal of Technology Information, 5(2), 7–13. https://doi.org/10.37365/it.v5i2.39

Darmawan, A., Yudhisari, I., Anwari, A., & Makruf, M. (2023). Pola Prediksi Kelulusan Siswa Madrasah Aliyah Swasta dengan Support Vector Machine dan Random Forest. Jurnal Minfo Polgan, 12(1), 387–400. https://doi.org/10.33395/jmp.v12i1.12388

Latifah, S. L. S. N. H. (2020). Prediksi Prestasi Akademik Mahasiswa Menggunakan Random Forest dan C.45. VIII(1), 47–52. www.bsi.ac.id

Linawati, S., Nurdiani, S., Handayani, K., & Latifah, L. (2020). Prediksi Prestasi Akademik Mahasiswa Menggunakan Algoritma Random Forest Dan C4.5. Jurnal Khatulistiwa Informatika, 8(1), 47–52. https://doi.org/10.31294/jki.v8i1.7827

Permatasari, R. P. (2021). Implementasi algoritma decision tree untuk prediksi kelulusan mahasiswa tepat waktu laporan skripsi.

Plaosan, van S. (2019). Algoritma Random Forest. Http://Learningbox.Coffeecup.Com/05_2_Randomforest.Html, 18(1), 10–14.

Prediksi kelulusan pelajar menggunakan decision tree. (2023). 90–94.

Satrio Junaidi, Valicia Anggela, R., & Kariman, D. (2024). Klasifikasi Metode Data Mining untuk Prediksi Kelulusan Tepat Waktu Mahasiswa dengan Algoritma Naïve Bayes, Random Forest, Support Vector Machine (SVM) dan Artificial Neural Nerwork (ANN). Journal of Applied Computer Science and Technology, 5(1), 109–119. https://doi.org/10.52158/jacost.v5i1.489

Wahyudi, A. (2023). Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree Dan Naïve Bayes. Jurnal Permata Indonesia, 14(2), 132–138. https://doi.org/10.59737/jpi.v14i2.276

Zeniarja, J., Salam, A., & Ma’ruf, F. A. (2022). Seleksi Fitur dan Perbandingan Algoritma Klasifikasi untuk Prediksi Kelulusan Mahasiswa. Jurnal Rekayasa Elektrika, 18(2), 102–108. https://doi.org/10.17529/jre.v18i2.24047

Downloads

Published

2025-03-06

Issue

Section

Articles