ANALYSIS OF THE EFFECT OF FLOATING SOLAR PANEL DISTANCE ON WATER AS A PASSIVE COOLING SYSTEM

Authors

  • Taufiq Hidayat Universitas Pamulang Author
  • Joko Setiyono Universitas Pamulang Author

Keywords:

Floating Photovoltaic, Passive Cooling, Energy Efficiency, Panel Air Gap, Series-Parallel Configuration

Abstract

Solar panels are devices that convert solar energy into electrical energy, with performance being highly sensitive to operational temperature. An increase in panel surface temperature can significantly reduce energy conversion efficiency. One promising method to mitigate this thermal degradation is the utilization of passive cooling through the water body in a floating solar panel (FPV) system. This study aims to empirically analyze the effect of varying the vertical distance between a floating solar panel and the water surface (10 cm, 20 cm, and 30 cm) on the system's output power and overall efficiency. Furthermore, it compares the performance of series and parallel circuit configurations under these conditions. The research was conducted through direct field testing using a 200Wp monocrystalline solar panel mounted on an adjustable floating platform. Key parameters, including solar intensity, panel temperature, ambient temperature, voltage, and current, were measured every 10 minutes from 09:00 to 15:00 WIB under clear weather conditions. The collected data were used to calculate input power (Pin​), output power (Pout​), and system efficiency (η). The results revealed that the 10 cm distance, despite yielding a lower average output power of 4.04 W, achieved the highest average efficiency of 2.68% in the parallel configuration. This indicates that the passive cooling effect is most pronounced at closer proximity, enhancing the energy conversion rate even if total solar irradiance is slightly reduced. In contrast, the 20 cm and 30 cm distances produced higher average power (4.65 W and 4.76 W, respectively) but with lower efficiencies (2.60% and 2.38%). The parallel configuration generally provided more stable performance, which is advantageous in the dynamic FPV environment.

Downloads

Download data is not yet available.

References

Abdullah, Putri Maharani, Syahruddin Muhamad, Sitorus Nobert, and Dharma Surya. 2024. “SISTEM PENGGERAKAN REFLEKTOR EMPAT SISI UNTUK MENDAPATKAN SUDUT IDEAL PANTULAN CAHAYA MATAHARI PADA PANEL SURYA.” RELE (Rekayasa Elektrikal Dan Energi) : Jurnal Teknik Elektro. doi:10.30596/rele.v7i1.20583.

Çengel, Y. A., and A. J. Ghajar. 2020. Heat and Mass Transfer: Fundamentals & Applications. (6th ed.). McGraw-Hill Education.

Damanik, Trinona, and Salomo Silaban. 2023. “PENERAPAN SOLAR CELL 200 WP LISTRIK PADA LISTRIK RUMAH TANGGA.” SINERGI POLMED: Jurnal Ilmiah Teknik Mesin 4(1):8–13. doi:10.51510/sinergipolmed.v4i1.992.

DURMUŞ ŞENYAPAR, Hafize Nurgül. 2023. “A Bibliometric Analysis on Renewable Energy’s Public Health Benefits.” Journal of Energy Systems 7(1):132–57. doi:10.30521/jes.1252122.

Haldianto Haldianto, Nur Alim, Abd Halik Lateko, and Adriani Adriani. 2023. “ANALISIS PENGARUH SUHU KERJA PADA PANEL SURYA TERHADAP DAYA KELUARAN DARI PANEL.”

Jatmiko, Azhar, Gaguk Marausna, and Ferry Setiawan. 2023. “BOX TYPE SOLAR PANEL COOLING SYSTEM DESIGN WITH HORIZONTAL FLOW DIRECTION.” Teknika STTKD: Jurnal Teknik, Elektronik, Engine 9(1):181–88. doi:10.56521/teknika.v9i1.625.

Kaban, Soni A., Muhamad Jafri, and Gusnawati Gusnawati. 2020. “OPTIMALISASI PENERIMAAN INTENSITAS CAHAYA MATAHARI PADA PERMUKAAN PANEL SURYA (SOLAR CELL) MENGGUNAKAN CERMIN.” Jurnal Fisika : Fisika Sains Dan Aplikasinya 5(2):108–17. doi:10.35508/fisa.v5i2.2243.

Nanda, Rizki Aulia, Agung Gumelar, and Dodi Mulyadi. 2024. “Penggunaan Dan Analisis Panel Surya Lepas Pantai Menggunakan Pipa Apung Sebagai Media Apung.” Jurnal Teknik Mesin Indonesia 19(02):65–70. doi:10.36289/jtmi.v19i02.720.

putra, and Rika Wahyuni Arsianti. 2022. Sistem Pendingin Menggunakan Air Untuk Optimasi Kinerja Panel Surya Berbasis Arduino.

Rahajoeningroem, Tri, and Ichsan Jatnika. 2022. “Sistem Pendingin Otomatis Panel Surya Untuk Peningkatan Daya Output Berbasis Mikrokontroler.” Telekontran : Jurnal Ilmiah Telekomunikasi, Kendali Dan Elektronika Terapan 10(1):69–77. doi:10.34010/telekontran.v10i1.4712.

Rinaldi, Aris, and Joko Mulyono. 2021. “PELUANG PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) PADA GENANGAN WADUK.” Jurnal Infrastruktur 07:106–13. doi:10.17605/OSF.IO/DTBVQ.

Downloads

Published

2025-09-14

Issue

Section

Articles