MACHINE LEARNING FOR PREDICTING COMMUNITY HEALTH RISKS: A CASE STUDY IN PREVENTIVE EPIDEMIOLOGY
Keywords:
Machine Learning, Health Risk Prediction, Preventive Epidemiology, Health Data Analysis, Artificial IntelligenceAbstract
This study aims to analyze the role and effectiveness of machine learning in predicting public health risks, focusing on applications in preventive epidemiology. Using a literature review, this study examines various empirical studies, predictive models, and algorithmic approaches that have been used to detect potential outbreaks and disease risk factors at the community level. The review demonstrates that machine learning has significant potential to support public health systems through its large-scale data analysis capabilities, identification of hidden patterns in epidemiological data, and increased accuracy in predicting disease spread. Furthermore, the integration of machine learning with real-time health data enables faster and more targeted preventive intervention planning. However, the study also identified challenges related to data quality, limited digital infrastructure, and ethical and privacy issues in the use of health data. Based on the literature findings, this study confirms that optimizing the application of machine learning in preventive epidemiology requires synergy between technology development, public health policy, and responsible data governance.
Downloads
References
Ahmad, F., Almuayqil, S. N., Humayun, M., Naseem, S., Khan, W. A., & Junaid, K. (2020a). Prediction of COVID-19 cases using machine learning for effective public health management. Computers, Materials and Continua, 66, 2265–2282. https://doi.org/10.32604/cmc.2021.013067
Ahmad, F., Almuayqil, S. N., Humayun, M., Naseem, S., Khan, W. A., & Junaid, K. (2020b). Prediction of COVID-19 cases using machine learning for effective public health management. Computers, Materials and Continua, 66, 2265–2282. https://doi.org/10.32604/cmc.2021.013067
Basu, S., Johnson, K. T., & Berkowitz, S. A. (2020). Use of Machine Learning Approaches in Clinical Epidemiological Research of Diabetes. Current Diabetes Reports, 20(12), 80. https://doi.org/10.1007/s11892-020-01353-5
Basu, T., Engel-Wolf, S., & Menzer, O. (2020). The Ethics of Machine Learning in Medical Sciences: Where Do We Stand Today? Indian Journal of Dermatology, 65(5), 358. https://doi.org/10.4103/ijd.IJD_419_20
Char, D. S., Abràmoff, M. D., & Feudtner, C. (2020). Identifying Ethical Considerations for Machine Learning Healthcare Applications. The American Journal of Bioethics. https://www.tandfonline.com/doi/abs/10.1080/15265161.2020.1819469
Ferdousi, R., Hossain, M. A., & Saddik, A. E. (2021a). Early-Stage Risk Prediction of Non-Communicable Disease Using Machine Learning in Health CPS. IEEE Access, 9, 96823–96837. https://doi.org/10.1109/ACCESS.2021.3094063
Ferdousi, R., Hossain, M. A., & Saddik, A. E. (2021b). Early-Stage Risk Prediction of Non-Communicable Disease Using Machine Learning in Health CPS. IEEE Access, 9, 96823–96837. https://doi.org/10.1109/ACCESS.2021.3094063
Hamilton, A. J., Strauss, A. T., Martinez, D. A., Hinson, J. S., Levin, S., Lin, G., & Klein, E. Y. (2021). Machine learning and artificial intelligence: Applications in healthcare epidemiology. Antimicrobial Stewardship & Healthcare Epidemiology, 1(1), e28. https://doi.org/10.1017/ash.2021.192
Haneef, R., Kab, S., Hrzic, R., Fuentes, S., Fosse-Edorh, S., Cosson, E., & Gallay, A. (2021). Use of artificial intelligence for public health surveillance: A case study to develop a machine Learning-algorithm to estimate the incidence of diabetes mellitus in France. Archives of Public Health, 79(1), 168. https://doi.org/10.1186/s13690-021-00687-0
Ho, T.-S., Weng, T.-C., Wang, J.-D., Han, H.-C., Cheng, H.-C., Yang, C.-C., Yu, C.-H., Liu, Y.-J., Hu, C. H., Huang, C.-Y., Chen, M.-H., King, C.-C., Oyang, Y.-J., & Liu, C.-C. (2020). Comparing machine learning with case-control models to identify confirmed dengue cases. PLOS Neglected Tropical Diseases, 14(11), e0008843. https://doi.org/10.1371/journal.pntd.0008843
Javed, H., Muqeet, H. A., Javed, T., Rehman, A. U., & Sadiq, R. (2024). Ethical Frameworks for Machine Learning in Sensitive Healthcare Applications. IEEE Access, 12, 16233–16254. https://doi.org/10.1109/ACCESS.2023.3340884
Li, Z., Zhou, H., Xu, Z., & Ma, Q. (2025). Machine learning and public health policy evaluation: Research dynamics and prospects for challenges. Frontiers in Public Health, 13. https://doi.org/10.3389/fpubh.2025.1502599
López-Martínez, F., Núñez-Valdez, E. R., García-Díaz, V., & Bursac, Z. (2020). A Case Study for a Big Data and Machine Learning Platform to Improve Medical Decision Support in Population Health Management. Algorithms, 13(4), 102. https://doi.org/10.3390/a13040102
Lorenzini, G., Shaw, D. M., Ossa, L. A., & Elger, B. S. (2022). Machine learning applications in healthcare and the role of informed consent: Ethical and practical considerations. Clinical Ethics. https://doi.org/10.1177/14777509221094476
Lourenço, L., Weber, L., Garcia, L., Ramos, V., & Souza, J. (2024). Machine Learning Algorithms to Estimate Propensity Scores in Health Policy Evaluation: A Scoping Review. International Journal of Environmental Research and Public Health, 21(11), 1484. https://doi.org/10.3390/ijerph21111484
Marcus, J. L., Sewell, W. C., Balzer, L. B., & Krakower, D. S. (2020). Artificial Intelligence and Machine Learning for HIV Prevention: Emerging Approaches to Ending the Epidemic. Current HIV/AIDS Reports, 17(3), 171–179. https://doi.org/10.1007/s11904-020-00490-6
Mhasawade, V., Zhao, Y., & Chunara, R. (2021). Machine learning and algorithmic fairness in public and population health. Nature Machine Intelligence, 3(8), 659–666. https://doi.org/10.1038/s42256-021-00373-4
Morgenstern, J. D., Buajitti, E., O’Neill, M., Piggott, T., Goel, V., Fridman, D., Kornas, K., & Rosella, L. C. (2020). Predicting population health with machine learning: A scoping review. https://doi.org/10.1136/bmjopen-2020-037860
Muhammad, L. J., Algehyne, E. A., Usman, S. S., Ahmad, A., Chakraborty, C., & Mohammed, I. A. (2020). Supervised Machine Learning Models for Prediction of COVID-19 Infection using Epidemiology Dataset. SN Computer Science, 2(1), 11. https://doi.org/10.1007/s42979-020-00394-7
Murdoch, B. (2021). Privacy and artificial intelligence: Challenges for protecting health information in a new era. BMC Medical Ethics, 22(1), 122. https://doi.org/10.1186/s12910-021-00687-3
Naresh, V. S., & Thamarai, M. (n.d.). Privacy‐preserving data mining and machine learning in healthcare: Applications, challenges, and solutions. https://doi.org/10.1002/widm.1490
Olawade, D. B., Wada, O. J., David-Olawade, A. C., Kunonga, E., Abaire, O., & Ling, J. (2023). Using artificial intelligence to improve public health: A narrative review. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1196397
Owolabi, B. O., & Owolabi, F. A. (2025). Predictive AI-driven epidemiology for tuberculosis outbreak prevention in achieving Zero TB City vision. International Journal of Research Publication and Reviews, 6(5), 318–340. https://doi.org/10.55248/gengpi.6.0525.1994
Payedimarri, A. B., Concina, D., Portinale, L., Canonico, M., Seys, D., Vanhaecht, K., & Panella, M. (2021). Prediction Models for Public Health Containment Measures on COVID-19 Using Artificial Intelligence and Machine Learning: A Systematic Review. International Journal of Environmental Research and Public Health, 18(9), 4499. https://doi.org/10.3390/ijerph18094499
Santosh, K. C., & Gaur, L. (2022). Artificial Intelligence and Machine Learning in Public Healthcare: Opportunities and Societal Impact. Springer Nature.
Siam, M. K. H., Bhattacharjee, M., Mahmud, S., Sarkar, M. S., & Rana, M. M. (2023). The Impact of Machine Learning on Society: An Analysis of Current Trends and Future Implications. https://doi.org/10.13140/RG.2.2.18751.48804
Su, C., Aseltine, R., Doshi, R., Chen, K., Rogers, S. C., & Wang, F. (2020). Machine learning for suicide risk prediction in children and adolescents with electronic health records. Translational Psychiatry, 10(1), 413. https://doi.org/10.1038/s41398-020-01100-0
Syed Ziaur Rahman, R Senthil, Venkadeshan Ramalingam, & R. Gopal. (2023). Predicting Infectious Disease Outbreaks with Machine Learning and Epidemiological Data. Journal of Advanced Zoology, 44(S4), 110–121. https://doi.org/10.17762/jaz.v44iS4.2177
USA, & Yadav, V. (2022). Machine Learning for Predicting Healthcare Policy Outcomes: Utilizing Machine Learning to Forecast the Outcomes of Proposed Healthcare Policies on Population Health and Economic Indicators. Journal of Artificial Intelligence & Cloud Computing, 1(2), 1–10. https://doi.org/10.47363/JAICC/2022(1)E112
Vaughan, L., Zhang, M., Gu, H., Rose, J. B., Naughton, C. C., Medema, G., Allan, V., Roiko, A., Blackall, L., & Zamyadi, A. (2023). An exploration of challenges associated with machine learning for time series forecasting of COVID-19 community spread using wastewater-based epidemiological data. Science of The Total Environment, 858, 159748. https://doi.org/10.1016/j.scitotenv.2022.159748
Wang, P., Zheng, X., Ai, G., Liu, D., & Zhu, B. (2020). Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran. Chaos, Solitons & Fractals, 140, 110214. https://doi.org/10.1016/j.chaos.2020.110214
Wiemken, T. L., & Kelley, R. R. (2020). Machine Learning in Epidemiology and Health Outcomes Research. Annual Review of Public Health, 41(Volume 41, 2020), 21–36. https://doi.org/10.1146/annurev-publhealth-040119-094437
Willem, T., Krammer, S., Böhm, A.-S., French, L. E., Hartmann, D., Lasser, T., & Buyx, A. (n.d.). Journal of the European Academy of Dermatology and Venereology | Wiley Online Library. https://doi.org/10.1111/jdv.18192
Zerka, F., Barakat, S., Walsh, S., Bogowicz, M., Leijenaar, R. T. H., Jochems, A., Miraglio, B., Townend, D., & Lambin, P. (2020). Systematic Review of Privacy-Preserving Distributed Machine Learning From Federated Databases in Health Care. JCO Clinical Cancer Informatics. https://doi.org/10.1200/CCI.19.00047