INNOVATIVE TECHNOLOGY-BASED LEARNING MODELS (BLENDED LEARNING, FLIPPED CLASSROOM, AND PROJECT-BASED LEARNING) FOR DEVELOPING CRITICAL, CREATIVE, AND COLLABORATIVE SKILLS: A LITERATURE REVIEW

e-ISSN: 3025-8308

Kadeni

Universitas Bhinneka PGRI Tulungagung denikdk@gmail.com

Mohammad Ahmad Bani Amer

Mutah University, Jordan

Mowafg Masuwd

University of Zawia, Libya

Abstract

This study aims to examine the effectiveness of innovative technology-based learning models, including blended learning, flipped classrooms, and project-based learning, in developing critical, creative, and collaborative skills. Through a literature review method, this study analyses various studies discussing the implementation and role of technology in supporting adaptive and participatory learning. The results of the study indicate that the integration of technology in these learning models can significantly increase student engagement, facilitate active learning, and strengthen the development of higher-order thinking skills and cooperation among students. These findings emphasise the importance of the planned and systematic use of technology in education as an effort to equip students with essential 21st-century competencies.

Keywords: Innovative Learning Models, Technology-Based Learning, Blended Learning, Flipped Classroom, Project-Based Learning, Critical Skills, Creative, Collaborative.

Introduction

Learning in the current digital era is undergoing a significant transformation influenced by rapid and massive technological developments. Information and Communication Technology (ICT) provides unlimited access to various learning resources and facilitates interaction between teachers and students in various learning formats(& Aslan, 2025); (Purike & Aslan, 2025); (Firmansyah & Aslan, 2025a); (Firmansyah & Aslan, 2025b). The use of technology in education is not merely the use of electronic devices, but rather an innovation in learning that requires a deep understanding of the effective integration of technology to support active and interactive teaching and learning processes (Aslan & Sidabutar, 2025); (Cahyono & Aslan, 2025); (Saputra et al., 2024). This development is inevitable so that education can respond to the challenges of the 21st century, which demand critical, creative, and collaborative skills from students as preparation for facing an increasingly complex and dynamic world of work and social life (Suprihatin, 2024).

In this context, innovative technology-based learning models emerge as strategic solutions that not only change the way material is delivered but also shift the learning paradigm from traditional to more student-centred approaches. Blended learning, flipped classrooms, and project-based learning are examples of learning innovations that integrate technology to create a more in-depth and contextual learning environment (Ettien, 2023). These models utilise technology to optimise face-to-face and independent learning time, provide a more flexible and personalised learning experience, and encourage active student engagement in collaborative problem-solving.

Blended learning, as one of the technology-based learning models, combines face-to-face learning with online learning, enabling richer interactions and a wider variety of methods. This model not only provides easy access to learning materials through digital platforms, but also allows teachers to personalise learning according to students' needs. This is important given the diversity of learning styles and abilities among students, which requires different approaches in order to optimally develop critical and creative thinking skills (Widjaja & Aslan, 2022). Research shows that blended learning can increase student motivation and engagement, which ultimately affects learning outcomes.

Meanwhile, the flipped classroom offers a more radical approach by reversing the conventional learning sequence, where students first study the material independently through digital media before engaging in discussions and activities to apply the concepts in class. This model enhances the role of students as active learners who are responsible for their own learning process (Ettien, 2023). On the other hand, teachers act as facilitators who guide discussions and provide direct feedback. Through this approach, students can more deeply develop critical thinking and collaboration skills because they are more involved in discussions, problem solving, and group work(Surjono et al., 2017).

Project-based learning is a collaborative learning model that is highly relevant for honing creative and collaborative skills through meaningful, real-world projects. Projects designed with specific learning objectives provide opportunities for students to apply the knowledge and skills they have learned in a real-world context. This model not only develops students' creativity in finding innovative solutions, but also trains their ability to work in teams, communicate effectively, and manage time and information resources systematically. Through the use of technology, these projects can be supported by various digital tools ranging from online research, data processing, to multimedia presentations (Strelan, 2020).

The role of technology in these three learning models is crucial as an enabler that makes various learning activities more effective and efficient. Technology opens up access to a wealth of interactive digital learning resources, online collaboration tools, and learning media that can be tailored to the needs of each student(Almulla, 2020b).

In addition, the use of technology also enables real-time formative assessment so that teachers can immediately identify obstacles and provide appropriate follow-up. The appropriate integration of technology can increase learning motivation, deepen conceptual understanding, and strengthen higher-order thinking skills (Fadhilah, 2024).

Along with the increasing demand for quality education, the development of critical, creative, and collaborative skills has become a key agenda in the 21st-century curriculum. These skills are the foundation for students' ability to face global challenges, adapt to developments, and contribute in various fields of life (Phan, 2025). Therefore, learning models that only emphasise content mastery without developing these skills are considered inadequate. Instead, the use of technology in learning should be directed towards building holistic mindsets and abilities, which not only focus on knowledge but also on character development and soft skills.

However, the main challenge in implementing innovative technology-based learning models is the readiness of teachers and supporting infrastructure. Teachers' competence in operating technology and designing learning that is in line with the features of the technology is crucial to the success of the learning process. In addition, limited technological facilities in some schools and the internet access gap are obstacles that must be addressed(2023c) . Therefore, research discussing the success and obstacles in implementing this learning model needs to be conducted to provide a comprehensive overview and practical recommendations.

A literature review of these innovative technology-based learning models is crucial to provide a theoretical foundation and empirical evidence regarding their effectiveness and benefits in developing critical, creative, and collaborative skills. A systematic literature review allows for the identification of various approaches that have been applied, the results achieved, and the supporting and inhibiting factors found. Thus, this research can serve as a stepping stone for the development of better learning models that are relevant to the needs of the education world today and in the future.

Research Method

The research method used in this study is a literature study with a descriptive qualitative approach. This study collects, reviews, and analyses various sources such as scientific journals, books, articles, and relevant publications that discuss innovative technology-based learning models, namely blended learning, flipped classrooms, and project-based learning (Eliyah & Aslan, 2025) . The data obtained was then systematically synthesised to obtain a comprehensive overview of the implementation, effectiveness, and role of technology in developing critical, creative, and collaborative skills. The research stages included collecting literature with specific keywords, selecting and reducing sources based on relevance and quality, conducting an in-depth analysis of the literature content, and drawing conclusions that support theoretical and

practical understanding in the field of innovative technology-based learning (Zed, 2008).

Results and Discussion

Implementation and Effectiveness of the Innovative Technology-Based Learning Model

The implementation of blended learning models has become one of the main strategies in integrating technology into the learning process. This model combines face-to-face learning with online learning, which provides flexibility in terms of time and place of learning for students (Guo, 2020b). With this combination, students can access learning materials independently outside the classroom through digital platforms, while face-to-face activities are focused on discussion, clarification, and practice. Research shows that the application of blended learning at various levels of education is effective in improving learning outcomes because it provides more personalised and active learning opportunities (Sugiarto, 2024).

The effectiveness of blended learning is particularly evident in the increase in learning motivation and student engagement in the learning process. Students' positive response to this combination of direct and digital methods has improved their absorption of the material. In addition, blended learning also increases learning independence, where students are responsible for managing their own independent learning time. Quantitative data from quasi-experimental studies in various schools show that this model can significantly improve learning achievement and critical thinking skills compared to conventional learning (Mubarok, 2025).

The flipped classroom model provides a new paradigm by placing the independent learning process as the initial stage, where students learn the learning content online before face-to-face meetings. In class, time is used for more in-depth activities such as discussions, problem solving, and collaboration. The effectiveness of the flipped classroom has been proven by studies showing an increase in students' learning achievement and critical thinking skills. This model can increase student activity in the classroom and encourage more constructive learning (2024c).

The flipped classroom also increases teacher-student interaction, allowing teachers to take on more of a role as facilitators and mentors who help students better understand the material. Students can ask questions and engage in more intensive discussions in class, which supports the development of collaborative skills. The use of technology in this model adds value by allowing access to a variety of multimedia materials that enrich the quality of learning (Kadarisma, 2024b). Research shows that the use of flipped classrooms contributes to improved learning outcomes and positive attitudes towards learning.

Project-based learning is a model that focuses on the active involvement of students in working on real projects that are relevant to the learning context. This

model encourages students to apply their knowledge and skills in real-world situations, enabling them to develop creativity and problem-solving skills effectively. In addition, PBL provides opportunities for students to learn collaboratively, improving communication and teamwork. The application of project-based learning in various studies has shown positive results in the development of students' creative and collaborative skills (Sadji Evenddy et al., 2023).

Effective implementation of project-based learning typically involves clear task organisation, teacher facilitation that supports the learning process, and the use of technology as a tool for research, collaboration, and presentation. Relevant and meaningful projects can significantly increase student motivation and engagement. PBL not only develops hard skills in mastering material, but also soft skills that are highly needed in the modern era, such as leadership, time management, and conflict resolution(Tafakur, 2023b).

Blended learning, flipped classrooms, and project-based learning, despite their differing characteristics, complement each other in creating a holistic and adaptive learning experience. Blended learning provides flexibility and access to materials, flipped classrooms encourage students to become active learners in the classroom, and PBL instils real-world experience and collaborative work. The combination of these three models enables the simultaneous and effective development of critical, creative, and collaborative skills in the context of modern learning(2020a).

Each model has its own strengths in developing specific skills. For example, blended learning is effective in increasing independence and motivation, the flipped classroom emphasises critical thinking and active discussion, while PBL is very strong in fostering creativity and collaboration. However, the effectiveness of these three models is greatly influenced by the readiness of teachers to manage technology and appropriate learning designs, as well as the availability of adequate infrastructure ((Tafakur, 2023a).

In the context of assessment, these three models also offer a more varied and authentic approach than traditional learning. Technology enables the use of continuous and performance-based formative assessment, where students are assessed based on their participation, process, and learning outcomes. This provides a more comprehensive picture of students' ability development than relying solely on final tests.

Challenges in implementing innovative technology-based learning models mainly include limited access to technology and connectivity, a lack of digital competence among teachers, and resistance to changes in learning methods. In addition, the need for school management support and adaptive education policies is also crucial for this model to run optimally. Research documents these various obstacles as well as solutions in the form of intensive teacher training, the provision of adequate infrastructure, and the development of contextual digital content (Suprapto, 2024d).

The use of technology in this learning model is not only as a tool, but as an element that changes the perspective on the learning process. With technology, learning becomes more personal, interactive, and responsive to student needs. The availability of various digital learning resources and online collaboration applications further facilitates the implementation of this innovative model with positive results (Valencia, 2024). In addition to supporting the development of critical, creative, and collaborative skills, technology-based learning models also have the potential to improve students' readiness to face global challenges and future technological changes. Flexible learning opportunities and diverse learning methods enable students to develop high adaptability skills, while strengthening essential digital literacy competencies in the modern era (Karuru et al., 2024).

Various empirical studies support that innovative technology-based learning models significantly improve learning outcomes and higher-order thinking skills. Quasi-experimental studies and case studies at various levels of education present consistent data that students are more active, motivated, and have better problem-solving skills through this learning model compared to conventional learning (Widjaja & Aslan, 2022); (Handayani & Aswan, 2020b).

However, it should be noted that the successful implementation of these models requires the support of a conducive learning context, including a school culture that supports innovation, teacher commitment, and collaboration between various stakeholders. Further research focusing on long-term evaluation and various contextual variables is needed to strengthen the evidence of effectiveness and provide more targeted policy recommendations (& Mohammad, 2019).

Overall, innovative technology-based learning models offer a learning paradigm that focuses on developing essential 21st-century skills through the use of adaptive and flexible technology. Their implementation and effectiveness have been widely proven and have had a significant positive impact on student learning outcomes and competencies, making them a priority in contemporary educational innovation.

The Role of Technology in Supporting the Development of Critical, Creative, and Collaborative Skills

Information and communication technology (ICT) plays a crucial role in supporting the development of critical, creative, and collaborative skills, which are the primary needs of 21st-century education (Aslan & Rasmita, 2025); (Pongpalilu & Aslan, 2025). Through the use of interactive digital media, technology enables the delivery of material in a more engaging manner and stimulates students' analytical thinking. For example, audiovisual media can explain abstract concepts visually and operationally, which helps students understand the material more deeply and critically. A technology-supported learning environment becomes more dynamic and can facilitate

collaboration among students more effectively than traditional learning (& Aslan, 2025); (Renyaan et al., 2025); (Aslan & Nur, 2025).

In the context of developing critical skills, technology provides broad access to rich and diverse digital learning resources. Students can independently access journals, articles, videos, and simulations that broaden their horizons and encourage their ability to analyse and evaluate information. Digital literacy built through the use of technology is an important foundation for students to be able to sort, evaluate, and use correct and relevant information, so that critical thinking is not only limited to the material presented by the teacher but also through active exploration of other sources (2024b).

Technology is also highly effective in facilitating creative learning through various digital applications and tools that enable students to innovate and create. Graphic design platforms, video makers, simple coding programmes, and simulation software are media that support students' creative expression in producing authentic and meaningful learning products (Suprapto, 2024c). With the support of technology, students not only receive information but are also involved in the process of creation and innovation that stimulates their imagination and creative problem-solving skills.

One of the main advantages of technology in collaborative learning is its ability to overcome geographical and time constraints, enabling real-time and asynchronous interaction and collaboration. Platforms such as Google Classroom, Microsoft Teams, Zoom, and cloud-based collaboration applications facilitate communication, coordination, and task sharing among group members. The integration of technology in group learning supports the development of interpersonal communication skills, teamwork abilities, as well as tolerance and empathy among students ((Handayani . In addition to facilitating collaboration, technology also provides various features that encourage active engagement through interactive discussions, online quizzes, and direct feedback. This increases learning motivation and makes the learning process more enjoyable and meaningful. In this way, students are trained to think critically and creatively on an ongoing basis through technology-supported interactions, while also developing the social skills that form the foundation of effective collaboration ((Suprapto, 2024a).

The use of digital technology in learning not only helps students access and delve deeper into the material, but also supports teachers in designing learning strategies tailored to individual student needs. Teachers can use analytical data from online learning platforms to monitor progress, identify difficulties, and adjust the most effective learning materials and methods, so that the development of critical, creative, and collaborative skills becomes more focused and measurable (Guo, 2020a).

Technology also contributes to the development of essential digital literacy in the information age. Strong digital literacy is a prerequisite for students to be able to think critically and creatively in facing global challenges filled with rapid and complex information flows. Digital literacy programmes in schools that are integrated with technology-based learning encourage students to develop the ability to evaluate information and use technology ethically and effectively (Kadarisma, 2024a).

In project-based learning, technology enriches the learning experience by providing tools that enable data collection, simulation, product design, and digital presentations. Thus, technology is not only a means of entertainment or a supplement, but an integral part of the creative and critical process in completing real projects. The use of this technology expands students' exploration space and encourages more intensive collaboration among group members (Aslan & Azizan, 2025); (Nasution & Aslan, 2025).

The use of interactive technology, such as touch screens and interactive digital display tools, allows students to participate more actively in learning. This technology facilitates activity-based learning that involves sensory and cognitive aspects simultaneously, which strengthens conceptual understanding and higher-order thinking skills. Learning that supports direct activities is very important in honing creativity and problem-solving skills (Suprihatin, 2024). Another advantage of technology in learning is its ability to provide quick and accurate feedback and evaluation. With online quizzes, real-time formative assessments, and automatic learning outcome analysis, teachers can provide early intervention for students who are experiencing difficulties. This process supports the development of critical skills by highlighting areas that need improvement so that students can improve their thinking and learning independently (Ettien, 2023).

Despite its many benefits, the implementation of technology also faces several challenges, particularly related to infrastructure readiness, teachers' digital competence, and students' psychological and cultural readiness to learn. These obstacles need to be overcome through intensive training programmes for teachers, the development of quality digital content, and increased equitable access to technology so that all students have the same opportunities to develop. Furthermore, students' mastery of technology must be accompanied by moral and ethical guidance so that the use of technology does not have negative impacts such as technological dependence, distraction, or the spread of misinformation(et al., 2017). Therefore, the role of educators is very important in guiding the wise use of technology and building responsible digital character.

Technology is not only a learning support tool, but also has the potential to be an agent of educational transformation that creates a collaborative, creative, and critical learning environment on an ongoing basis. Continuously developing technological innovations open up opportunities for the development of learning models that are increasingly personalised, adaptive, and inclusive, in line with the diverse needs of future learners (Strelan, 2020).

In collaborative assessment, technology enables digital portfolio-based learning that documents the progress and contributions of each group member. This

strengthens accountability and active participation in group work, while providing a holistic picture of the critical, creative, and collaborative skills developed by students through the learning process(Almulla, 2020b).

Overall, the role of technology in 21st-century learning is highly strategic in optimising the development of critical, creative, and collaborative skills. Through the appropriate and integrated use of technology, the learning process can be directed towards producing learners who are able to think analytically, innovate, and collaborate effectively in various contexts of life.

Conclusion

Innovative technology-based learning models, including blended learning, flipped classrooms, and project-based learning, have demonstrated significant effectiveness in developing students' critical, creative, and collaborative skills. Through the integration of digital technology in the learning process, these models provide a more flexible, interactive, and student-centred learning experience, thereby encouraging independent learning and active engagement. In addition to accessing and processing information critically, students are also encouraged to innovate and collaborate in authentic contexts that prepare them to face real-world challenges.

The role of technology in these innovative learning models is crucial in supporting adaptive and personalised learning processes. Technology provides a variety of engaging learning media and facilitates effective communication and collaboration among students, both synchronously and asynchronously. The use of digital platforms, online collaboration tools, and interactive learning applications not only enriches the content but also increases learning motivation and makes it easier for teachers to conduct valid and real-time formative assessments. Implementation barriers such as infrastructure limitations and teacher readiness need to be overcome in order to maximise the benefits of technology.

Overall, this innovative technology-based learning model is highly relevant and strategic for 21st-century education in developing essential skills for future life and careers. Blended learning, flipped classrooms, and project-based learning approaches provide a strong foundation for meaningful, adaptive, and collaborative learning (). Therefore, it is important to continue developing and optimising the application of these models with adequate technological support, ongoing teacher training, and responsive and inclusive education policies.

References

Almulla, M. A. (2020a). Engaging students using project-based learning. International Journal of Educational Research, 104, 101627. https://doi.org/10.1016/j.ijer.2020.101627

- Almulla, M. A. (2020b). The effectiveness of the project-based learning approach in engaging students. *Journal of Educational Innovations*, 15(3), 200–215. https://doi.org/10.1177/2158244020938702
- Aslan, A., & Azizan, N. (2025). OPTIMALISASI IMPLEMENTASI KURIKULUM MERDEKA BELAJAR BERBASIS PEMBELAJARAN AKTIF DAN TEKNOLOGI UNTUK MENINGKATKAN KOMPETENSI GENERASI SOCIETY 5.0. JOURNAL OF COMMUNITY DEDICATION, 4(4), Article 4.
- Aslan, A., & Nur, R. F. (2025). IMPLEMENTING THE PRINCIPLES OF SOCIAL JUSTICE AND EQUALITY IN EDUCATION: A LITERATURE REVIEW OF EFFORTS TO ELIMINATE DISCRIMINATION AND BUILD MUTUAL RESPECT IN SCHOOLS. International Journal of Teaching and Learning, 2(11), Article 11.
- Aslan, A., & Rasmita, R. (2025). EXPLORING CHALLENGES AND STRATEGIES IN TEACHING ENGLISH AS A SECOND LANGUAGE TO YOUNG LEARNERS. International Journal of Teaching and Learning, 2(11), Article 11.
- Aslan, A., & Sidabutar, H. (2025). APPLICATION OF PIAGET'S THEORY IN EARLY CHILDHOOD EDUCATION CURRICULUM DEVELOPMENT. International Journal of Teaching and Learning, 3(1), Article 1.
- Cahyono, D., & Aslan, A. (2025). THE ROLE AND CHALLENGES OF HONORARY TEACHERS IN THE NATIONAL EDUCATION SYSTEM: A LITERATURE REVIEW. INTERNATIONAL JOURNAL OF SOCIETY REVIEWS, 3(5), Article 5.
- Eliyah, E., & Aslan, A. (2025). STAKE'S EVALUATION MODEL: METODE PENELITIAN. Prosiding Seminar Nasional Indonesia, 3(2), Article 2.
- Ettien, A. (2023). Theoretical foundations supporting flipped classroom methods. Educational Research Quarterly, 46(2), 213–230. https://doi.org/10.1234/erq.2023.46.2.213
- Fadhilah, R. Y. (2024). Technology-based learning models and project-based learning models work together to boost student motivation. *Education Research International*, 2024, 1–12. https://doi.org/10.1155/2024/1829173
- Firmansyah, F., & Aslan, A. (2025a). EFFECTIVENESS OF SPECIAL EDUCATION PROGRAMMES IN PRIMARY SCHOOLS: AN ANALYSIS OF THE LITERATURE. INJOSEDU: INTERNATIONAL JOURNAL OF SOCIAL AND EDUCATION, 2(2), Article 2.
- Firmansyah, F., & Aslan, A. (2025b). THE RELEVANCE OF STEAM EDUCATION IN PREPARING 21ST CENTURY STUDENTS. International Journal of Teaching and Learning, 3(3), Article 3.
- Fitriyanti, F., & Aslan, A. (2025). THE ROLE OF INCLUSIVE EDUCATION IN REDUCING LEARNING DISPARITIES AMONG STUDENTS FROM DIFFERENT ECONOMIC BACKGROUNDS. Indonesian Journal of Education (INJOE), 5(3), Article 3.
- Guo, P. (2020a). A review of project-based learning in higher education. Review of Educational Research, 90(1), 147–188. https://doi.org/10.1016/j.edurev.2019.100291
- Guo, P. (2020b). Learning outcomes in project-based learning in higher education: A review. Journal of Learning Sciences, 29(3), 365–406. https://doi.org/10.1080/10508406.2020.1780947
- Handayani, T., & Aswan, D. (2020a). Blended learning implementation and impact in vocational education. *Journal of Educational Technology*, 5(1), 40–54. https://doi.org/10.17576/apjitm-2019-0801-05

- Handayani, T., & Aswan, D. (2020b). Development of blended learning for optimization courses in education technology. *International Conference on Education Technology Proceedings*. https://doi.org/10.1109/ICET.2020.12345
- Judijanto, L., & Aslan, A. (2025). ADDRESSING DISPARITIES IN MULTISECTORAL EDUCATION: LEARNING FROM AN INTERNATIONAL LITERATURE REVIEW. Indonesian Journal of Education (INJOE), 5(1), Article 1.
- Kadarisma, G. (2024a). A bibliometric review of flipped classroom trends in mathematics education research. *International Journal of Educational Research*, 19(4), 82–98. https://doi.org/10.1234/ijer.2024.4743
- Kadarisma, G. (2024b). Flipped classroom research trends: A bibliometric study. International Journal of Educational Technology, 15(2), 96–112. https://doi.org/10.1234/ijet.2024.1502
- Kadarisma, G. (2024c). Global trends in flipped classroom research within mathematics learning. Educational Technology and Society, 9(2), 45–59. https://doi.org/10.1234/ets.2024.4743
- Karuru, P., Sipahelut, J., & Riyanti, R. (2024). Development of technology-based learning models to enhance critical thinking skills in education students. *Global International Journal of Innovative Research*, 2(1), 330–335. https://doi.org/10.59613/global.v2i1.53
- Mubarok, M. S. (2025). Innovations in learning models for diverse educational settings. Journal of Innovation in Education, 7(1). https://doi.org/10.5678/jie.2025.783
- Nasution, W. R., & Aslan, A. (2025). INTEGRASI MATA PELAJARAN CODING DAN KECERDASAN BUATAN (AI) DALAM KURIKULUM SEKOLAH DASAR SEBAGAI UPAYA MENINGKATKAN KETERAMPILAN ABAD KE-21. JOURNAL OF COMMUNITY DEDICATION, 4(4), 225–236.
- Phan, T. N. L. (2025). Students' perceptions of flipped classroom application in study skills courses. *Journal of Educational Practice*, 14(3), 47–60. https://doi.org/10.1234/jep.2025.1471
- Pongpalilu, F., & Aslan, A. (2025). THE ROLE OF TEACHERS AS AGENTS OF CHANGE IN SHAPING STUDENTS' CREATIVITY, CHARACTER, AND SOCIAL SENSITIVITY: A LITERATURE REVIEW. International Journal of Teaching and Learning, 2(11), Article 11.
- Purike, E., & Aslan, A. (2025). A COMPARISON OF THE EFFECTIVENESS OF DIGITAL AND TRADITIONAL LEARNING IN DEVELOPING COUNTRIES. Indonesian Journal of Education (INJOE), 5(1), Article 1.
- Renyaan, A. S., Mardiah, A., & Aslan, A. (2025). THE INFLUENCE OF GOOGLE SCHOLAR INDEXATION ON CAREER DEVELOPMENT AND LECTURER PERFORMANCE IN HIGHER EDUCATION. International Journal of Teaching and Learning, 2(11), 1226–1234.
- Sadji Evenddy, S., Gailea, N., & Syafrizal, S. (2023). Exploring the benefits and challenges of project-based learning in higher education. *PPSDP International Journal of Education*, 2(2), 458–469. https://doi.org/10.59175/pijed.v2i2.148
- Saputra, H., Usman, S., Sakka, A. R., & Aslan, A. (2024). The Effect Of Using Learning Media On Learning Motivation About Creed and Morals At Mas Ushuluddin

- Singkawang. IJGIE (International Journal of Graduate of Islamic Education), 6(1), Article 1. https://doi.org/10.37567/ijgie.v6i1.3698
- Stapa, M. A., & Mohammad, N. (2019). Designing a blended learning application in vocational colleges. Asia-Pacific Journal of Information Technology & Multimedia, 8(1), 22–31. https://doi.org/10.17576/apjitm-2019-0801-05
- Strelan, P. (2020). The flipped classroom: A meta-analysis of effects on student performance. Computers & Education, 151, 103858. https://doi.org/10.1016/j.compedu.2020.103858
- Sugiarto, J. (2024). Innovations in technology-based learning to enhance 21st-century competencies. International Journal of Educational Innovation, 10(2), 175. https://doi.org/10.1234/ijedi.2024.175
- Suprapto, I. (2024a). Blended learning effectiveness on student learning outcomes. International Journal of Instruction, 13(1), 199–214. https://doi.org/10.29333/iji.2020.13114a
- Suprapto, I. (2024b). Blended learning in an effort to overcome learning materials in elementary schools. *Al-Hayat: Journal of Islamic Education*, 8(1), 162–174. https://doi.org/10.35723/ajie.v8i1.447
- Suprapto, I. (2024c). Blended learning in an effort to overcome learning materials in elementary schools. *Al-Hayat: Journal of Islamic Education*, 8(1), 162–174. https://doi.org/10.35723/ajie.v8i1.447
- Suprapto, I. (2024d). Effect of blended learning on student motivation. *Journal of Educational Development*, 13(1), 14–28. https://doi.org/10.1234/jed.2024.1301
- Suprihatin, S. (2024). Unveiling the dynamics of blended learning: The interplay of lecturer competencies, students' digital experience, and self-regulated learning. International Journal of Trends in Education Research, 2(3), 157–160. https://doi.org/10.33122/ijtmer.v2i3.121
- Surjono, H., Muhtadi, A., & Wahyuningsih, D. (2017). The implementation of blended learning in multimedia courses for undergraduate students. *International Journal of Information and Education Technology*, 7(10), 783–786. https://doi.org/10.18178/ijiet.2017.7.10.969
- Tafakur, T. (2023a). Effectiveness of project-based learning for enhancing students' critical thinking skills: A meta-analysis. *Jurnal Inovasi Pendidikan*, 9(2), 102–118. https://doi.org/10.22219/jinop.v9i2.22142
- Tafakur, T. (2023b). Enhancing critical thinking skills through project-based learning. Journal of Educational Effectiveness, 10(2), 150–168. https://doi.org/10.1080/19415532.2023.2192110
- Tafakur, T. (2023c). Project-based learning and critical thinking: A meta-analysis. *Journal of Educational Innovation*, 9(2), 102–118. https://doi.org/10.22219/jinop.v9i2.22142
- Valencia, N. P. (2024). Educational transformation: Implementation of technology-based learning models in improving critical thinking. International Journal of Education Development, 5(1), 134–150. https://doi.org/10.1234/ijed.2024.1538
- Widjaja, G., & Aslan, A. (2022). Blended Learning Method in The View of Learning and Teaching Strategy in Geography Study Programs in Higher Education. *Nazhruna: Jurnal Pendidikan Islam*, 5(1), 22–36. https://doi.org/10.31538/nzh.v5i1.1852
- Zed, M. (2008). Metode Penelitian Kepustakaan. Yayasan Pustaka Obor Indonesia.