SENTIMENT ANALYSIS OF THE TJ: TRANSJAKARTA APPLICATION USING THE INDOBERT MODEL
Keywords:
Sentiment analysis, IndoBERT, TJ: Transjakarta, InSetAbstract
This research focuses on identifying user sentiment toward the TJ: Transjakarta application based on reviews available on the Google Play Store. A total of 3,431 user reviews were collected using web scraping techniques. The collected data were processed through several preprocessing stages, including text cleaning, normalization, tokenization, stopword removal, and stemming. Sentiment labels were initially assigned using a dictionary-based lexicon approach with the InSet lexicon, resulting in 1,991 positive and 1,440 negative reviews. The dataset was subsequently divided into training, validation, and testing subsets before fine-tuning the IndoBERT-base-p1 model. Experimental results show that the proposed model achieved an accuracy of 87.76%, with balanced precision and recall across both sentiment classes. Further analysis using word cloud visualization indicates that positive sentiment is mainly related to route accessibility and schedule information, while negative sentiment is dominated by technical issues and transaction-related problems. These results confirm the effectiveness of IndoBERT for Indonesian sentiment analysis and its potential use in evaluating the quality of public transportation applications
Downloads
References
[1] F. Y. A’la, “Optimasi klasifikasi sentimen ulasan game berbahasa Indonesia: IndoBERT dan SMOTE untuk menangani ketidakseimbangan kelas,” Edumatic: Jurnal Pendidikan Informatika, vol. 9, no. 1, pp. 256–265, 2025, doi: 10.29408/edumatic.v9i1.29666.
[2] A. Z. Amrullah, A. S. Anas, and M. A. J. Hidayat, “Analisis sentimen movie review menggunakan Naïve Bayes Classifier dengan seleksi fitur Chi Square,” Jurnal BITe, vol. 2, no. 1, pp. 40–44, 2020, doi: 10.30812/bite.v2i1.804.
[3] J. Asher and E. P. Rachmawati, “Analisis sentimen ulasan bintang lima aplikasi Instagram di Google Play Store menggunakan IndoBERT,” DINAMIK, vol. 30, pp. 318–330, 2025.
[4] G. T. Fadilah, L. Muflikhah, and R. S. Perdana, “Analisis sentimen produk hijab pada e-commerce Tokopedia menggunakan algoritma Support Vector Machine dan IndoBERT embedding,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 2, 2025.
[5] M. Fernanda and N. Fathoni, “Perbandingan performa labeling lexicon InSet dan VADER pada analisis sentimen Rohingya di aplikasi X dengan SVM,” Jurnal Informatika dan Sains Teknologi, vol. 1, no. 3, pp. 62–76, 2024, doi: 10.62951/modem.v1i3.112.
[6] N. M. S. Hadna, P. I. Santosa, and W. W. Winarno, “Studi literatur tentang perbandingan metode untuk proses analisis sentimen di Twitter,” in Proc. Seminar Nasional Teknologi Informasi dan Komunikasi (SENTIKA), Yogyakarta, Indonesia, 2016.
[7] H. Ibna Pratama and P. T. Prasetyaningrum, “Penerapan Support Vector Machine untuk analisis sentimen pada Google review hotel,” Journal of Information System Research, vol. 6, no. 2, pp. 1244–1252, 2025, doi: 10.47065/josh.v6i2.6645.
[8] Kadarsih and D. Pujianto, “Application of transformer model and word embedding in sentiment analysis of Indonesian e-commerce application review,” Journal of Computer Networks, Architecture and High Performance Computing, vol. 7, no. 3, pp. 720–732, 2025, doi: 10.47709/cnahpc.v7i3.6354.
[9] M. R. Manoppo et al., “Analisis sentimen publik di media sosial terhadap kenaikan PPN 12% di Indonesia menggunakan IndoBERT,” Jurnal Kecerdasan Buatan dan Teknologi Informasi, vol. 4, no. 2, pp. 152–163, 2025, doi: 10.69916/jkbti.v4i2.322.
[10] W. Nurfitri and A. Chowanda, “Analisis sentimen pada kasus positif Covid-19 berdasarkan pemberitaan media di Indonesia menggunakan IndoBERT,” Jurnal Ilmiah Komputer, pp. 580–593, 2024.
[11] A. S. Rizkia, W. Wufron, and F. F. Roji, “Analisis sentimen Coretax: Perbandingan pelabelan data manual, transformers-based, dan lexicon-based pada performa IndoBERT,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 3, 2025, doi: 10.57152/malcom.v5i3.2151.
[12] Savitri, F. Rizki, and A. Sobri, “Implementation of BERT in sentiment analysis of national digital Samsat (SIGNAL) user reviews based on machine learning,” Jurnal Ilmu Komputer dan Teknologi Informasi, pp. 67–75, 2025, doi: 10.18860/mat.v17i2.32059.
[13] U. Surapati et al., “Implementasi metode Naïve Bayes untuk mendeteksi hate speech pada Twitter,” INTECOMS: Journal of Information Technology and Computer Science, vol. 6, no. 2, 2023.
[14] Y. Wu, Z. Jin, C. Shi, P. Liang, and T. Zhan, “Research on the application of deep learning-based BERT model in sentiment analysis,” 2024.


